Citation: SHI Xun-wang, LI Jian-fen, Xin XIN, LI Hong-xia, LU Yao, LIU Zhao, CHEN Qun-peng. Preparation of NiO-Fe2O3/PG-γ-Al2O3 catalysts and its application in pyrolysis of biomass straw[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1434-1440. shu

Preparation of NiO-Fe2O3/PG-γ-Al2O3 catalysts and its application in pyrolysis of biomass straw

  • Corresponding author: LI Jian-fen, lijfen@163.com
  • Received Date: 15 July 2017
    Revised Date: 20 October 2017

    Fund Project: The project was supported by the Public Welfare Industry (agriculture) Research special (201503135)and the Project of College Outstanding Technological Innovation in Hubei Province(T201407)the Public Welfare Industry (agriculture) Research special 201503135the Project of College Outstanding Technological Innovation in Hubei Province T201407

Figures(5)

  • The supported NiO-Fe2O3/Palygorskite and Gamma Alumina(NiO-Fe2O3/PG-γ-Al2O3) catalysts were prepared by deposition-precipitation and homogeneous-precipitation methods using PG-γ-Al2O3 as a carrier, and different approaches including EDX, XRD, SEM and N2 isothermal adsorption-desorption were used to characterize the synthetic catalysts. Meanwhile, the catalytic pyrolysis of biomass straw was conducted to test the catalytic activity, the regenerative service life and the anti-carbon capacity of NiO-Fe2O3/PG-γ-Al2O3 catalyst in a tube furnace, and to compare with the catalytic properties of single carrier catalysts. The results indicate that the prepared PG-γ-Al2O3 carriers have a high specific surface area of 134.21 m2/g and the average pore size is 39.65 nm. The active components are loaded uniformly and in a good dispersion over NiO-Fe2O3/PG-γ-Al2O3 catalyst, meanwhile, the Ni-Fe alloy and the nickel-aluminum spinel structure exist simultaneously in the catalyst. The catalytic activity testing shows that the NiO-Fe2O3/PG-γ-Al2O3 catalysts have a very high catalytic activity in pyrolysis of biomass straw. It could obviously improve the quality of the gas such as the content of H2 and CO and the calorific value. The catalytic activity, regeneration effect and anti-carbon deposition ability of NiO-Fe2O3/PG catalyst are better than that with single carrier catalyst.
  • 加载中
    1. [1]

      ISMAIL T M, EL-SALAM M A. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification[J]. Appl Therm Eng, 2017,112(5):1460-1473.  

    2. [2]

      DIGMAN B, JOO H S, KIM D S. Recent progress in gasification/pyrolysis technologies for biomass conversion to energy[J]. Environ Prog Rog Sustainable Energy, 2010,28(1):47-51.  

    3. [3]

      HU En-yuan, YAN Chang-feng, CAI Chi-liu, HU Rong-rong. Experimental research on hydrogen production by catalytic steam reforming of bio-oil aqueous fraction[J]. J Fuel Chem Technol, 2009,37(2):177-182.  

    4. [4]

      MONTEJO C, COSTA C, RAMOS P, MÁRQUEZM D C. Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants[J]. Appl Therm Eng, 2011,31(13):2135-2140. doi: 10.1016/j.applthermaleng.2011.03.041

    5. [5]

      BUCHIREDDY P R, BRICKA R M, RODRIGUEZ J, HOLMES W. Biomass gasification:Catalytic removal of tars over zeolites and nickel supported zeolites[J]. Energy Fuels, 2010,24(4):2707-2715. doi: 10.1021/ef901529d

    6. [6]

      LI J, YAN R, XIAO B, LIANG D T. Development of nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification[J]. Environ Sci Technol, 2008,42(16):6224-6229. doi: 10.1021/es800138r

    7. [7]

      ASHOK J, KAWI S. Nickel-iron alloy supported over iron-Alumina catalysts for steam reforming of biomass tar model compound[J]. Acs Catal, 2014,4(1):289-301. doi: 10.1021/cs400621p

    8. [8]

      WANG L, LI D, KOIKE M, WATANABE H. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas[J]. Appl Catal A:Gen, 2011,392(1/2):248-255.  

    9. [9]

      ZOU X, CHEN T, LIU H, ZHANG P. An insight into the effect of calcination conditions on catalytic cracking of toluene over 3Fe8Ni/palygorskite:Catalysts characterization and performance[J]. Fuel, 2017,190(15):47-57.  

    10. [10]

      DAN Wei-yi, LI Jian-fen, DING Jie-feng, FAN Yi, WANG Qiang-sheng. Preparation of NiO-Fe2O3/MD catalysts and its application in gasification of municipal solid waste[J]. J Fuel Chem Technol, 2013,41(8):1015-1019.  

    11. [11]

      WANG Ning, SUN Zi-jin, WANG Yong-zhao, GAO Xiao-qing, ZHAO Yong-xiang. Preparation of bimetallic Ni-Fe/γ-Al2O3 catalyst and its activity for CO methanation[J]. J Fuel Chem Technol, 2011,39(3):219-223.  

    12. [12]

      BAMBAL A S, VECCHIO K S, CATTOLICA R J. Catalytic effect of Ni and Fe addition to gasifier bed material in the steam reforming of producer gas[J]. Ind Eng Chem Res, 2014,53(35):13656-66. doi: 10.1021/ie502304p

    13. [13]

      BO Long-li, WANG Xiao-chang, WANG Miao-gang, ZHOU Li-hui. Characteristics of carbon-supported metal catalyst prepared by microwave method[J]. J Xian Univ Arch Technol, 2008,40(4):532-537.  

    14. [14]

      ZHANG Yu-hong, XIONG Guo-xing, SHENG Shi-shan, LIU Sheng-lin, YANG Wei-shen. Interaction of NiO with γ-Al2O3 supporter of NiO/γ-Al2O3 catalysts[J]. Acta Phys-Chim Sin, 1999,15(8):735-741.  

    15. [15]

      AL-FATESH A S, NAEEM M A, FAKEEHA A H, ABASAEED A E. CO2 reforming of methane to produce syngas over γ-Al2O3 supported Ni-Sr catalysts[J]. Bull Chem Soc Jpn, 2013,86(6):742-1748. doi: 10.1246/bcsj.20130002

    16. [16]

      LU Wen, KONG Meng, YANG Qi, FAN Zhe-yong, FEI Jin-hua, ZHENG Xiao-ming. Influence of support on catalytic behavior of ni-1based catalysts in steam reforming of toluene[J]. Chem React Eng Technol, 2012,28(3):238-243.  

    17. [17]

      XU L, SONG H, CHOU L. Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides[J]. Appl Catal B:Environ, 2011,s108-1109(6):177-190.  

    18. [18]

      SHEN W, MOMOI H, KOMATSUBARA K, SAITO T. Marked role of mesopores for the prevention of sintering and carbon deposition in dry reforming of methane over ordered mesoporous Ni-Mg-Al oxides[J]. Catal Today, 2011,171(1):150-155. doi: 10.1016/j.cattod.2011.04.003

    19. [19]

      NEWNHAM J, MANTRI K, AMIN M H, TARDIO J. Highly stable and active Ni-1mesoporous alumina catalysts for dry reforming of methane[J]. Int J Hydrogen Energy, 2012,37(2):1454-1464. doi: 10.1016/j.ijhydene.2011.10.036

    20. [20]

      KUO H P, PAN S M, HSU H T. Comparisons of the hydrogen-1rich syngas compositions from wet rice husk slurry steam reforming reactions using different catalysts[J]. Biomass Bioenergy, 2011,35(7):3025-3031. doi: 10.1016/j.biombioe.2011.04.005

    21. [21]

      WANG L, LI D, KOIKE M, WATANABE H, XU Y. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas[J]. Appl Catal A:Gen, 2011,392(1-2):248-255. doi: 10.1016/j.apcata.2010.11.013

    22. [22]

      HOU Z Y, YASHIMA T. Meso-1porous Ni/Mg/Al catalysts for methane reforming with CO2[J]. Appl Catal A:Gen, 2004,261(2):205-209. doi: 10.1016/j.apcata.2003.11.002

    23. [23]

      ARKATOVA L A. The deposition of coke during carbon dioxide reforming of methane over intermetallides[J]. Cataly Today, 2010,157(1/4):170-176.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(0)
  • Abstract views(2232)
  • HTML views(900)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return