Citation: QIN Yu-hong, HAN Qing-qing, REN Wei-ping, ZHAO Zi-bing, FENG Jie, LI Wen-ying, GAO Song-ping. Fluxing mechanism of rice straw for Jincheng anthracite under weak reducing atmosphere[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1440-1446. shu

Fluxing mechanism of rice straw for Jincheng anthracite under weak reducing atmosphere

  • Corresponding author: FENG Jie, fengjie@tyut.edu.cn
  • Received Date: 27 July 2016
    Revised Date: 18 September 2016

Figures(5)

  • The fluxing mechanism of rice straw for Jincheng anthracite with high ash fusion temperatures was investigated under weak reducing atmosphere by CaO-Al2O3-SiO2 ternary phase diagram, X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX). The fusion temperatures of blended ash decrease, and the content of basic oxide CaO, Na2O and K2O increases with increment of rice straw addition. The slagging index Rb/a is between 0.20 and 0.69. The fluid temperature (FT) declines to 1 369℃ by adding 20% rice straw, which could satisfy requirement of liquid slag discharge for gasifier. The addition of rice straw reduces the initial temperature and increases the occurrences proportion and probability of liquid phase in the ash. The formation of crystal albite with low melting point and eutectics formed from anorthite, quartz and mullite lead the decrease of ash fusion temperatures.
  • 加载中
    1. [1]

      WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, KOBAYASHI Nobusuke, MORI Shigekatsu, ITATYA Yoshinori. Gasifiction characteristics of coal with high ash fusion temperature in lab-scale down-flow gasifier[J]. J Combust Sci Technol, 2009,15(2):182-186.  

    2. [2]

      KIRUBAKARAN V, SIVARAMAKRISHNAN V, NALINI R, SEKAR T, PREMALATHA M, SUBRAMANIAN P. A review on gasification of biomass[J]. Renewable Sustainable Energy Rev, 2009,13:179-186. doi: 10.1016/j.rser.2007.07.001

    3. [3]

      CHEN X L, TANG J Y, TIAN X J, WANG L. Influence of biomass addition on Jincheng coal ash fusion temperatures[J]. Fuel, 2015,160:614-620. doi: 10.1016/j.fuel.2015.08.024

    4. [4]

      ZHANG G J, REINMÖLLER M, KLINGER M, MEYER B. Ash melting behavior and slag infiltration into alumina refractory simulating co-gasification of coal and biomass[J]. Fuel, 2015,139:457-465. doi: 10.1016/j.fuel.2014.09.029

    5. [5]

      PRIYANTO D E, UENO S, SATO N, KASAI H, TANOUE T. Ash transformation by co-firing of coal with high ratios of woody biomass and effect on slagging propensity[J]. Fuel, 2016,174:172-179. doi: 10.1016/j.fuel.2016.01.072

    6. [6]

      KUPKA T, MANCINI M, IRMER M, WEBER R. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel[J]. Fuel, 2008,87(12):2824-2837. doi: 10.1016/j.fuel.2008.01.024

    7. [7]

      VASSILEV S V, BAXTER D, ANDERSEN L K, VASSILEVA C G. An overview of the composition and application of biomass ash.Part 1.Phase-mineral and chemical composition and classification[J]. Fuel, 2015,105:40-76.  

    8. [8]

      YAO Run-sheng, LI Xiao-hong, ZUO Yong-fei, LI Fan. Effect of sodium based flux on the ash melting characteristics temperature of Lingshi coal[J]. J China Coal Soc, 2011,36(6):1027-1031.  

    9. [9]

      VAN DYK J C. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Miner Eng, 2006,19(3):280-286. doi: 10.1016/j.mineng.2005.06.018

    10. [10]

      LI Wen, BAI Jin.Chemistry of Ash from Coal[M].Beijing:Science Press, 2013.

    11. [11]

      LI Zhen-zhu, LI Feng-hai, MA Ming-jie, HUANG Jie-jie, FANG Yi-tian. Review on controllable adjustment of coal ash melting characteristic with high ash melting point[J]. Chem Eng, 2015,43(3):60-63.  

    12. [12]

      LIU B, HE Q H, JIANG Z H, XU R F, HU B X. Relationship between coal ash composition and ash fusion temperatures[J]. Fuel, 2013,105:293-300. doi: 10.1016/j.fuel.2012.06.046

    13. [13]

      WANG Qin-hui, JING Ni-jie, LUO Zhong-yang, LI Xiao-min, JIE Tao. Experiments on the effect of chemical components of coalash on the sintering temperature[J]. J China Coal Soc, 2010,35(6):1015-1020.  

    14. [14]

      DU S L, YANG H P, QIAN K Z, WANG X H, CHEN H P. Fusion and transformation properties of the inorganic components in biomass ash[J]. Fuel, 2014,117:1281-1287. doi: 10.1016/j.fuel.2013.07.085

    15. [15]

      CHEN Shu-jiang, TIAN Feng-ren, LI Guo-hua, ZHANG Yun.Analysis and Application of Phase Diagram[M].Beijing:Metallurgical Industry Press, 2007.

    16. [16]

      DENG C Y, ZHANG C, TAN P, FANG Q Y, CHEN G. The melting and transformation characteristics of minerals during co-combustion of coal with different sludges[J]. Energy Fuels, 2015,29(10):6758-6767. doi: 10.1021/acs.energyfuels.5b01201

    17. [17]

      WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-ling, MORI Shigekatsu, ITATYA Yoshinori, CHEN Long. Analysis of coal ash fusion characteristics of high fusibility coal blending with low's with ternarr phase diagram[J]. Clean Coal Technol, 2007,13(3):64-67.  

    18. [18]

      WU X J, ZHANG Z X, CHEN Y S, ZHOU T, FAN J J, PIAO G L, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010,91(11):1591-1600. doi: 10.1016/j.fuproc.2010.06.007

    19. [19]

      WANG H G, QIU P H, WU S J, ZHU Y, LI Y Q, ZHAO G B. Melting behavior of typical ash particles in reducing atmosphere[J]. Energy Fuels, 2012,26(6):3527-3541. doi: 10.1021/ef300247y

    20. [20]

      LI F H, LI Z Z, HUANG J J, FANG Y T. Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics[J]. Appl Energy, 2014,131:279-287. doi: 10.1016/j.apenergy.2014.06.051

    21. [21]

      WANG L, SKREIBERGØ , BECIDAN M, LI H. Investigation of rye straw ash sintering characteristics and the effect of additives[J]. Appl Energy, 2016,162:1195-1204. doi: 10.1016/j.apenergy.2015.05.027

    22. [22]

      NAMKUNG H, XU L, KIM C, YUAN X Z, KANG T J, KIM H T. Effect of mineral components on sintering of ash particles at low temperature fouling conditions[J]. Fuel Process Technol, 2016,141:82-92. doi: 10.1016/j.fuproc.2015.06.004

    23. [23]

      MATJIE R H, FRENCH D, WARD C R, PISTORIUS P C, LI Z S. Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process[J]. Fuel Process Technol, 2011,92(8):1426-1433. doi: 10.1016/j.fuproc.2011.03.002

  • 加载中
    1. [1]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    2. [2]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    3. [3]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    6. [6]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    10. [10]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    17. [17]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    18. [18]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    19. [19]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(0)
  • Abstract views(864)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return