Citation: CHI Ming-shu, WANG Qing, LI Song-yang, LIU Qi, CHA Bo-yu. Influence of demineralization on minerals and organic structure in Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1424-1433. shu

Influence of demineralization on minerals and organic structure in Huadian oil shale

  • Corresponding author: WANG Qing, rlx888@163.com
  • Received Date: 8 May 2017
    Revised Date: 24 July 2017

    Fund Project: the National Natural Science Foundation of China 51676032The project was supported by the National Natural Science Foundation of China(51676032)

Figures(7)

  • Effect of demineralization on minerals and organic structure of Huadian oil shale treated by HCl and HF/HCl sequentially was examined using FT-IR and XRD technology. The results show that HCl/HF treatment can effectively remove minerals except pyrite, but HCl can damage the space frame structure of kaolinite. Organic matter structure with the form of disordered amorphous polymers are mainly composed of aliphatic structure in lower metamorphic grade. Acid treatment effect on shale organic macromolecular structure is very low, but has certain influence on the organic structure. HCl treatment mainly influences oxygen containing functional group and benzene ring structure, generates a large amount of carboxylic acid and destroys the polycyclic structure of benzene ring, but has less effect on aliphatic compounds. HF treatment main affects aliphatic compounds, it can destroy the fat chain bridge bond structure fracture, makes fat chain length shorter and decreases content of aliphatics in the samples. Both HF and HCl treatment can destroy the hydroxyl groups of shale, especially for the associated hydroxyl hydrogen bond.
  • 加载中
    1. [1]

      HE Ji-lai, WANG Qing. The development and application of Estonia gerut carbonization technology[J]. J Northeast Dianli Univ, 2016,36(2):76-80.  

    2. [2]

      WANG Qing, ZHAN Hong-xi, CHI Ming-shu, CUI Da, XU Xiang-cheng. Effect of smectite on the pyrolysis of kerogen isolated from oil shale[J]. Chem Ind Eng Prog, 2016,35(3):766-772.  

    3. [3]

      CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao, MA Liang-bo. Influence of inherent carbonates and silicates on pyrolytic products of Tailao oil shale[J]. J Chem Ind Eng(China), 2017,68(4):1582-1589.  

    4. [4]

      WIJAYAN , ZHANG L. A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal[J]. Energy Fuels, 2011,25:1-16. doi: 10.1021/ef1008192

    5. [5]

      WANG Qing, ZHANG Hong-xi, CHI Ming-shu, CUI Da, XU Xiang-cheng. Effect of mine ral matte r on product e volution during pyrolysis of Huadian oil shale[J]. J Fuel Chem Technol, 2016,44(3):328-334.  

    6. [6]

      LARSEN J W, PAN C S, SHAWVER S. Effect of demineralization on the macromolecular structure of coals[J]. Energy Fuels, 1989,3(5):557-561. doi: 10.1021/ef00017a004

    7. [7]

      TEKELY P, NICOLE D, DELPUECH J J, TOTINO E, MULLER J F. Chemical structure changes in coals after low-temperature oxidation and demineralization by acid treatment as revealed by high resolution solid state 13 C NMR[J]. Fuel Process Technol, 1987,15(87):225-231.  

    8. [8]

      STRYDOM C A, BUNT J R, SCHOBERT H H, RAGHOO M. Changes to the organic functional groups of an inertinite rich medium rank bituminous coal during acid treatment processes[J]. Fuel Process Technol, 2011,92(4):764-770. doi: 10.1016/j.fuproc.2010.09.008

    9. [9]

      LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol, 2014,42(2):129-137.  

    10. [10]

      ZOU X W, YAO J Z, YANG X M, SONG W L, LIN W G. Catalytic effects of metal chlorides on the pyrolysis of lignite[J]. Energy Fuels, 2007,21(2):619-624. doi: 10.1021/ef060477h

    11. [11]

      ZHANG Hong, PU Wen-xiu, HA Si, LI Ying, LIU Dan. Influence of acid treatment on the properties of pulverized coals with low ash content[J]. J Eng Thermophys, 2009,30(4):699-702.  

    12. [12]

      The office of Geological Dictionary of Geology and mineral resources. Geological Dictionary. Four, Applied geology fascicle of mineral deposits[M]. Beijing:Geological Press, 1986.

    13. [13]

      SHI Jin-ming, XIANG Jun, HU Song, SUN Lu-shi, SU Sheng, XU Chao-fen, XU Kai. Change of coal structure during washing process[J]. J Chem Ind Eng(China), 2010,61(12):3220-3227.  

    14. [14]

      WU L M, TONG D S, ZHAO L Z, WANG H, TONG D S, YU W H. Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite[J]. Appl Clay Sci, 2014,95(3):74-82.  

    15. [15]

      IBARRA J V, PALACIOS J M, DE ANDRÉS A M. Analysis of coal and char ashes and their ability for sulphur retention[J]. Fuel, 1989,68(7):861-867. doi: 10.1016/0016-2361(89)90121-X

    16. [16]

      WEN Lu. The infrared spectroscopy of minerals[M]. Chongqing:Chongqing University Press, 1989.

    17. [17]

      DE BENEDETTO G E, LAVIANO R, SABBATINI L, ZAMBONIN P G. Infrared spectroscopy in the mineralogical characterization of ancient pottery[J]. Journal of Cultural Heritage, 2002,3(3):177-186. doi: 10.1016/S1296-2074(02)01178-0

    18. [18]

      HAN Feng, ZHANG Yan-guo, MENG Ai-hong, LI Qing-hai. FTIR analysis of Yunnan Lignite[J]. China Coal Soc, 2014,39(11):2293-2299.  

    19. [19]

      GHOORAH M, DLUGOGORSKI B Z, OSKIERSKI H C, KENNEDY E M. Study of thermally conditioned and weak acid-treated serpentinites for mineralisation of carbon dioxide[J]. Miner Eng, 2014,59(5):17-30.  

    20. [20]

      SUN Bin, Mineral decomposition characteristic research of oil shale[D] Jilin:Northeast Elcetric Power University, 2013.

    21. [21]

      SAKANISHI K, SAITO I, ISHOM F, WATANABE I, MOCHIDA I, OKUYAMA N. Characterization and elution behaviors of organically associated minerals in coals during acid treatment and solvent extraction[J]. Fuel, 2002,81(11/12):1471-1475.  

    22. [22]

      HAN Xiu-ling, CHEN Kai-hui. Study of infrared absorption spectra on the kaolinite-halloysite evolutionary series[J]. Chin J Geol, 1982(1):71-79.

    23. [23]

      QIN Kuang-zong, LAO Yong-xin. Study on the structure of oil shale in Maoming and FushunⅠ. Aromatic carbon structure of organic matter[J]. J Fuel Chem Technol, 1985,13(2):39-46.  

    24. [24]

      LARSEN J W, PAN C S, SHAWVER S. Effect of demineralization on the macromolecular structure of coals[J]. Energy Fuels, 1989,3:557-561. doi: 10.1021/ef00017a004

    25. [25]

      BAI Jing-ru, PAN Shuo, LIN Wei-sheng, JIA Chun-xia, WANG Qing. Influence of hydrochloric acid pickling on dissolution behaviors of small molecules in oil shale[J]. J Fuel Chem Technol, 2014,42(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2014.12.001 

    26. [26]

      WIJAYA N, ZHANG L. A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal[J]. Energy Fuels, 2011,25(1):1-16. doi: 10.1021/ef1008192

    27. [27]

      GENG W, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009,88(1):139-144. doi: 10.1016/j.fuel.2008.07.027

    28. [28]

      WEI Qiang, TANG Yue-gang, WANG Shao-qing, HUANG Fan. 13C-NMR study on effect of demineralization by mixed acid treatment on Yongxing lignite structure[J]. J Fuel Chem Technol, 2015,43(4):410-415.  

    29. [29]

      PATTERSON J H. A review of the effects of minerals in processing of Australian oil shales[J]. Fuel, 1994,73(3):321-327. doi: 10.1016/0016-2361(94)90082-5

    30. [30]

      IBARRA J V, MUNOZ E, MOLINER R. FTIR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996,24(6):725-735.  

    31. [31]

      ZHAO Y, LIU L, QIU P H, XIE X, CHEN X Y, LIN D. Impacts of chemical fractionation on Zhundong coal's chemical structure and pyrolysis reactivity[J]. Fuel Process Technol, 2017,155:144-152. doi: 10.1016/j.fuproc.2016.05.011

    32. [32]

      LIN R, RITZ G P. Reflectance FT-IR microspectroscopy of fossil algae contained in organic-rich shales[J]. Appl Spectrosc, 1993,47(3):265-271. doi: 10.1366/0003702934066794

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

Metrics
  • PDF Downloads(1)
  • Abstract views(1873)
  • HTML views(806)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return