Citation: ZHAO Zhi-jing, YANG Bin, ZHAO Yu-meng. Structure and hydrogen evolution performance of nano-porous PtCu/C membrane catalysts[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 483-488. shu

Structure and hydrogen evolution performance of nano-porous PtCu/C membrane catalysts

  • Corresponding author: YANG Bin, yangbin@kmust.edu.cn
  • Received Date: 17 November 2015
    Revised Date: 31 January 2016

Figures(6)

  • PtCu/C membrane catalysts were prepared by ion beam sputtering (IBS) with moving bimetallic Pt and Cu targets; they were post-processed by vacuum annealing in combination with acid etching. High resolution transmission electron microscopy (HRTEM & STEM) and atomic force microscope (AFM) were employed to characterize the surface morphology of post-processed samples; the alloying degree of Pt and Cu was determined by the X-ray diffraction (XRD). Through cyclic voltammetry (CV) and linear sweep voltammetry (LSV), the electrochemical hydrogen evolution properties of the PtCu/C membrane catalysts were investigated. The results indicated that the PtCu/C membrane catalyst annealed at 400 ℃ and etched by HNO3 exhibits honeycomb nano-porous structure; the loading of Pt is reduced by about 8.77%, whereas the catalytic activity is enhanced by about 20.62%, in comparison compared with the original PtCu/C membrane catalyst.
  • 加载中
    1. [1]

      LI W Z, XIN Q, YAN Y S. Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: The effect of catalyst composition[J]. Int J Hygrogen Energy, 2010,35(6):2530-2538. doi: 10.1016/j.ijhydene.2010.01.013

    2. [2]

      JIA Yu-jie, JIANG Jian-chun, SUN Kang, LU Tian-hong. Effect of Pt/Au atomic ratio in active-carbon-supported Au-Pt catalyst on its cathodic performance in direct formic acid fuel cells[J]. J Fuel Chem Technol, 2011,39(10):792-795. doi: 10.1016/S1872-5813(11)60046-7

    3. [3]

      JOO J, KIM P, KIM W, KIM Y, YI J. Effect of the preparation conditions of carbon-supported Pt catalyst on PEMFC performance[J]. J Appl Electrochem, 2009,39(1):135-140. doi: 10.1007/s10800-008-9645-9

    4. [4]

      ZHANG Xi-gui, WANG Tao, XIA Bao-jia, QIN Pei, XU Nai-xin. Study on oxygen electrode of PEMFC-effect of Ni, Co on properties of Pt/C electro-catalyst[J]. J Fuel Chem Technol, 2003,31(5):411-414.  

    5. [5]

      LIU Ming-yi, HE Yuan-qin, MAO Zong-qiang, XIE Xiao-feng. CO-poisoning mechanism of anodic electrocatalyst in proton-exchange membrane fuel cell[J]. Chin J Power Sources, 2002,26(z1):247-249.  

    6. [6]

      XU Yun-fei, Study of Pt-Ru/C catalyst of proton-exchange membrane fuel cell[D]. Tianjing: Tianjing University, 2007.

    7. [7]

      MA Bo-yuan, ZHAO Xing. Theoretical study on CO poisoning of Pt-Ru catalysts[J]. J Liaoning Univ Technol, 2008,28(4):274-277.  

    8. [8]

      LI Li, WANG Heng-xiu, XU Bo-qing, LI Jin-lu, LU Tian-hong, MAO Zong-qiang. Study of PEMFC electro-catalysts: Characteristics of a homemade CO-tolerant Pt-Ru/C catalyst[J]. Acta Chim Sin, 2003,61(6):818-823.  

    9. [9]

      WANG H, WANG R F, LI H, WANG Q F, KANG J, LEI Z Q. Facile synthesis of carbon-supported pseudo-core@shell PdCu@Pt nanoparticles for direct methanol fuel cells[J]. Int J Hydrogen Energy, 2011,36(1):839-848. doi: 10.1016/j.ijhydene.2010.09.033

    10. [10]

      ADILBISH G, LEE J W, JANG Y S, LEE H G, YU Y T. Preparation of Pt/C electrode with double catalyst layers by electrophoresis deposition method for PEMFC[J]. Int J Hydrogen Energy, 2014,39(7):3381-3386. doi: 10.1016/j.ijhydene.2013.11.044

    11. [11]

      MICHEAUD C, BAZIN D, GUERIN M, MARECOT P, BARBIER J. Study of supported bimetallic Pd-Pt catalysts characterization and catalytic activity for toluene hydrogenation[J]. React Kinet Catal Lett, 2000,69(2):209-216. doi: 10.1023/A:1005623127174

    12. [12]

      XU Dan, JIA Li-hua, GUO Xiang-feng. Cu-doped mesoporous VOx-TiO2 in catalytic hydroxylation of benzene to phenol[J]. Chin J Catal, 2013,34(2):341-350. doi: 10.1016/S1872-2067(11)60487-7

    13. [13]

      PODLOVCHENKO B I, MAKSIMOV Y M, MASLAKOV K I. Electrocatalytic properties of Au electrodes decorated with Pt submonolayers by galvanic displacement of copper adatoms[J]. Electrochim Acta, 2014,130:351-360. doi: 10.1016/j.electacta.2014.02.148

    14. [14]

      FENG L G, YANG J, HU Y, ZHU J B, LIU C P, XING W. Electrocatalytic properites of PdCeOx/C anodic catalyst for formic acid electrooxidation[J]. Int J Hydrogen Energy, 2012,37:4812-4818. doi: 10.1016/j.ijhydene.2011.12.114

    15. [15]

      LIAO M Y, WANG Y L, CHEN G Q, ZHOU H, LI Y H, ZHONG C J, CHEN B H. Reducing Pt use in the catalysts for formic acid electrooxidation via nanoengineered surface structure[J]. J Power Sources, 2014,257:45-51. doi: 10.1016/j.jpowsour.2014.01.103

    16. [16]

      HUANG N, YANG B, SHEN M Z, HAO X Y. Effects of acid treatment on the electrocatalysis properties of PtCuLaOx/C composite membrane materials[J]. Rare Met Mater Eng, 2013,42(9):1795-1799. doi: 10.1016/S1875-5372(14)60007-2

    17. [17]

      ZHANG Yun-dong, LIU Hong-xiang. Production of optical coatings with ion beam sputter deposition technique[J]. Opto-Electron Eng, 2001,28(5):69-72.  

    18. [18]

      FEDER R, FROST F, NEUMANN H, BUNDESMANN C, RAUSCHENBACH B. Systematic investigations of low energy Arion beam sputtering of Si and Ag[J]. Nucl Instrum Methods Phys Res, Sect B, 2013,317:137-142. doi: 10.1016/j.nimb.2013.01.056

    19. [19]

      LIANG X, WANG X, MIAO E L, ZHENG J J, WANG F, WANG G W, GU Y Q. An investigation on the removal characteristics of compound materials during ion beam sputtering using the Kinetic Monte Carlo method[J]. Nucl Instrum Methods Phys Res, Sect B, 2014,323:1-6. doi: 10.1016/j.nimb.2014.01.010

    20. [20]

      FUH Y K, WANG C H. In situ roughness monitoring of sputtered Pt thin film under dynamic turbulence using adaptive optics[J]. Optik, 2014,25(9):2086-2089.  

    21. [21]

      TAKASHI N, TAKUO N, TSUTOMU M, HIROSHI I. Effect of current density on electrochemical shape control of Pt nanoparticles[J]. Electrochim Acta, 2014,129:152-159. doi: 10.1016/j.electacta.2014.02.105

    22. [22]

      LI Y S, HAO F R, WANG Y H, ZHANG Y H, GE C W, LU T H. Facile synthesis of octahedral Pt-Pd nanoparticles stabilized by silsesquioxane for the electrooxidation of formic acid[J]. Electrochim Acta, 2014,133:302-307. doi: 10.1016/j.electacta.2014.04.030

    23. [23]

      HUANG Neng. Effect of postprocessing on the catalytic performance of Pt based rare earth oxide thin film electrodes[D]. Kunming: Kunming University of Science and Technology, 2013.

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    3. [3]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    4. [4]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    6. [6]

      Ying ZhangChuang ShenJiaxu ZhangQi ShenFei XuShengheng WangJiuyi HuFaisal SaleemFeng HuangZhimin Luo . Ultrasmall PtCu nanosheets as a broadband phototheranostic agent in near-infrared biowindow. Chinese Chemical Letters, 2025, 36(6): 111059-. doi: 10.1016/j.cclet.2025.111059

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    10. [10]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(1)
  • Abstract views(1342)
  • HTML views(341)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return