Citation: MENG Hao, LIN Ming-gui, NIU Peng-yu, WANG Jun-gang, HOU Bo, LI De-bao. Effect of phase transformation of La2Zr2O7 catalysts on catalytic performance for the oxidative coupling of methane[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 949-959. shu

Effect of phase transformation of La2Zr2O7 catalysts on catalytic performance for the oxidative coupling of methane

  • Corresponding author: LIN Ming-gui, linmg@sxicc.ac.cn LI De-bao, dbli@163.com
  • Received Date: 30 March 2020
    Revised Date: 9 July 2020

    Fund Project: The project was supported by Science and Technology Plan Unveiling Bidding Project of Shanxi (20191102006) and the Autonomous Research Project of State Key Laboratory of Coal Conversion (2020BWZ003)Autonomous Research Project of State Key Laboratory of Coal Conversion 2020BWZ003Science and Technology Plan Unveiling Bidding Project of Shanxi 20191102006

Figures(11)

  • La2Zr2O7 catalyst was prepared using co-precipitation method and then calcined at different temperatures to obtain a series of catalysts with different phase structures. Their catalytic performances for oxidative coupling of methane were evaluated in a fixed bed micro-reactor. Meanwhile, the changes of phase structure, surface base sites and surface oxygen species upon these samples were characterized with XRD, Raman, CO2-TPD, and XPS. With the increase of the calcination temperature from 700 to 1200℃, the crystallinity of La2Zr2O7 catalysts increased continuously and the crystal phase changed obviously. The structure of the catalysts gradually changed from amorphous to disordered defective fluorite structure, and ultimately to phrochlore structure. Both the number of medium basic sites and the electrophilic oxygen species, such as O22- and O2-, on the catalysts decreased with the phase transition caused by the temperature raising, resulting in the decrease of CH4 conversion and C2+ selectivity. The amorphous LZO-CP-700 catalyst showed the best performance in methane oxidation coupling reaction.
  • 加载中
    1. [1]

      CRUELLAS A, BAKKER J J, VAN SINT ANNALAND M, MEDRANO J A, GALLUCCI F. Techno-economic analysis of oxidative coupling of methane:Current state of the art and future perspectives[J]. Energy Convers Manage, 2019,198.  

    2. [2]

      HU Teng-fei. Technological progress and economic analysis of ethylene production from natural gas[J]. Chem Ind Eng Prog, 2016,35(6):1733-1738.  

    3. [3]

      ZHANG Ming-sen, FENG Yingjie, KE Li, WU Jie-hua, ZHAO Qingrui. Advances in the study of catalysts for the oxidation of methane to ethylene[J]. Petrochem Technol (China), 2015,44(4):401-408.  

    4. [4]

      OH S C, WU Y, TRAN D T, LEE I C, LEI Y, LIU D. Influences of cation and anion substitutions on oxidative coupling of methane over hydroxyapatite catalysts[J]. Fuel, 2016,167:208-217. doi: 10.1016/j.fuel.2015.11.058

    5. [5]

      KWON D, YANG I, SIM Y, HA J M, JUNG J C. A K2NiF4-type La2Li0.5Al0.5O4 catalyst for the oxidative coupling of methane (OCM)[J]. Catal Commun, 2019,128:1-5.  

    6. [6]

      PAK S, LUNSFORD J H. Thermal effects during the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts[J]. Appl Catal A:Gen, 1998,168(1):131-137. doi: 10.1016/S0926-860X(97)00340-2

    7. [7]

      Li Peng, ZHANG Ming-sen, WU Jie-hua. Research progress on mechanism and kinetics of methane oxidation coupling to ethylene production[J]. Petrochem Technol (China), 2018,47(9):1005-1012.  

    8. [8]

      GAMBO Y, JALIL A A, TRIWAHYONO S, ABDULRASHEED A A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene:A review[J]. J Ind Eng Chem, 2018,59:218-229. doi: 10.1016/j.jiec.2017.10.027

    9. [9]

      KIM I, LEE G, NA H B, HA J M, JUNG J C. Selective oxygen species for the oxidative coupling of methane[J]. Mol Catal, 2017,435:13-23. doi: 10.1016/j.mcat.2017.03.012

    10. [10]

      TANG Xin-de, YE Hong-qi, MA Chen-xia, LIU Hui. Structure, preparation and photocatalytic properties of pyroclastic oxide[J]. Chem Ind Eng Prog, 2009,21(10):2100-2114.  

    11. [11]

      XU J, ZHANG Y, XU X, FANG X, XI R, LIU Y, ZHENG R, WANG X. Constructing La2B2O7 (B=Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane:The effect of phase structures, superoxide anions, and alkalinity on the reactivity[J]. ACS Catal, 2019,9(5):4030-4045. doi: 10.1021/acscatal.9b00022

    12. [12]

      MINERVINI L G R W, SICKAFUS K E. Disorder in pyrochlore oxides[J]. J Am Ceram Soc, 2000,83(8):1873-1878.  

    13. [13]

      LANG M, ZHANG F, ZHANG J, WANG J, LIAN J, WEBER W J, SCHUSTER B, TRAUTMANN C, NEUMANN R, EWING R C. Review of A2B2O7 pyrochlore response to irradiation and pressure[J]. Nucl Instrum Methods Phys Ressect B, 2010,268(19):2951-2959. doi: 10.1016/j.nimb.2010.05.016

    14. [14]

      SHAFIQUE M, KENNEDY B J, IQBAL Y, UBIC R. The effect of B-site substitution on structural transformation and ionic conductivity in Ho2(ZryTi1-y)(2)O7[J]. J Alloy Compd, 2016,671:226-233. doi: 10.1016/j.jallcom.2016.02.087

    15. [15]

      ASHCROFT A T, CHEETHAM A K, GREEN M L H, GREY C P, VERNON P D F. Oxidative coupling of methane over tin-containing rare-earth pyrochlores[J]. J Chem Soc:Chem Commun, 1989(21):1667-1669. doi: 10.1039/c39890001667

    16. [16]

      PETIT C, REHSPRINGER J L, KADDOURI A, LIBS S, POIX P, KIENNEMANN A. Bond energy effects in methane oxidative coupling on phrochlore structures[J]. J Catal, 1993,140:328-334. doi: 10.1006/jcat.1993.1087

    17. [17]

      XU J, PENG L, FANG X, FU Z, LIU W, XU X, PENG H, ZHENG R, WANG X. Developing reactive catalysts for low temperature oxidative coupling of methane:On the factors deciding the reaction performance of Ln2Ce2O7 with different rare earth A sites[J]. Appl Catal A:Gen, 2018,552:117-128. doi: 10.1016/j.apcata.2018.01.004

    18. [18]

      FANG X, XIA L, PENG L, LUO Y, XU J, XU L, XU X, LIU W, ZHENG R, WANG X. Ln2Zr2O7 compounds (Ln=La, Pr, Sm, Y) with varied rare earth A sites for low temperature oxidative coupling of methane[J]. Chin Chem Lett, 2019,30(6):1141-1146. doi: 10.1016/j.cclet.2019.03.031

    19. [19]

      CHEN H, GAO Y, LIU Y, LUO H. Coprecipitation synthesis and thermal conductivity of La2Zr2O7[J]. J Alloy Compd, 2009,480(2):843-848. doi: 10.1016/j.jallcom.2009.02.081

    20. [20]

      KONG L, KARATCHEVTSEVA I, GREGG D J, BLACKFORD M G, HOLMES R, TRIANI G, VANDERAH T. A novel chemical route to prepare La2Zr2O7 pyrochlore[J]. J Am Ceram Soc, 2013,96(3):935-941. doi: 10.1111/jace.12060

    21. [21]

      TONG Y, LU L, YANG X, WANG X. Characterization and their photocatalytic properties of Ln2Zr2O7 (Ln=La, Nd, Sm, Dy, Er) nanocrystals by stearic acid method[J]. Solid State Sci, 2008,10(10):1379-1383. doi: 10.1016/j.solidstatesciences.2008.01.027

    22. [22]

      CHARTIER A, MEIS C, WEBER W J, CORRALES L R. Theoretical study of disorder in Ti-substituted La2Zr2O7[J]. Phys Rev B, 2002,65(13).  

    23. [23]

      WILDE P J, CATLOW C R A. Defects and diffusion in pyrochlore structured oxides[J]. Solid State Ion, 1998,112(3/4):173-183.  

    24. [24]

      MICHEL D, PEREZYJORBA M, COLLONGUES R. Study by Raman-spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures[J]. J Raman Spectrosc, 1976,5(2):163-180. doi: 10.1002/jrs.1250050208

    25. [25]

      WANG Lie-lin, XIE Hua, JIANG Kuo, DENG Chao, LONG Yong, KANG Xiao-qing, MI Guo-yuan. Synthesis and structure analysis of pyrochlore An_2Zr_2O_7(An=La、Nd) by spray pyrolysis[J]. J Nucl Radiochem, 2014,36(4):241-246.  

    26. [26]

      DUBOIS J L, CAMERON C J. Common features of oxidative coupling of methane cofeed catalysts[J]. Appl Catal, 1990,67(1):49-71.  

    27. [27]

      CHOUDHARY V R, RANE V H. Acidity basicity of rare-earth-oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons[J]. J Catal, 1991,130(2):411-422.  

    28. [28]

      PAPA F, LUMINITA P, OSICEANU P, BIRJEGA R, AKANE M, BALINT I. Acid-base properties of the active sites responsible for C2+ and CO2 formation over MO-Sm2O3 (M=Zn, Mg, Ca and Sr) mixed oxides in OCM reaction[J]. J Mol Catal A:Chem, 2011,346(1/2):46-54.

    29. [29]

      PENG L, XU J, FANG X, LIU W, XU X, LIU L, LI Z, PENG H, ZHENG R, WANG X. SnO2 Based catalysts with low-temperature performance for oxidative coupling of methane:Insight into the promotional effects of alkali-metal oxides[J]. Eur J Inorg Chem, 2018,2018(17):1787-1799. doi: 10.1002/ejic.201701440

    30. [30]

      ELKINS T W, ROBERTS S J, HAGELIN-WEAVER H E. Effects of alkali and alkaline-earth metal dopants on magnesium oxide supported rare-earth oxide catalysts in the oxidative coupling of methane[J]. Appl Catal A:Gen, 2016,528:175-190. doi: 10.1016/j.apcata.2016.09.011

    31. [31]

      FERREIRA V J, TAVARES P, FIGUEIREDO J L, FARIA J L. Ce-Doped La2O3 based catalyst for the oxidative coupling of methane[J]. Catal Commun, 2013,42:50-53. doi: 10.1016/j.catcom.2013.07.035

    32. [32]

      ZHANG Y, XU J, XU X, XI R, LIU Y, FANG X, WANG X. Tailoring La2Ce2O7 catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods[J]. Catal Today, 2019.  

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    12. [12]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    13. [13]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    14. [14]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    18. [18]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(7)
  • Abstract views(1254)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return