Effect of phase transformation of La2Zr2O7 catalysts on catalytic performance for the oxidative coupling of methane
- Corresponding author: LIN Ming-gui, linmg@sxicc.ac.cn LI De-bao, dbli@163.com
Citation:
MENG Hao, LIN Ming-gui, NIU Peng-yu, WANG Jun-gang, HOU Bo, LI De-bao. Effect of phase transformation of La2Zr2O7 catalysts on catalytic performance for the oxidative coupling of methane[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(8): 949-959.
CRUELLAS A, BAKKER J J, VAN SINT ANNALAND M, MEDRANO J A, GALLUCCI F. Techno-economic analysis of oxidative coupling of methane:Current state of the art and future perspectives[J]. Energy Convers Manage, 2019,198.
HU Teng-fei. Technological progress and economic analysis of ethylene production from natural gas[J]. Chem Ind Eng Prog, 2016,35(6):1733-1738.
ZHANG Ming-sen, FENG Yingjie, KE Li, WU Jie-hua, ZHAO Qingrui. Advances in the study of catalysts for the oxidation of methane to ethylene[J]. Petrochem Technol (China), 2015,44(4):401-408.
OH S C, WU Y, TRAN D T, LEE I C, LEI Y, LIU D. Influences of cation and anion substitutions on oxidative coupling of methane over hydroxyapatite catalysts[J]. Fuel, 2016,167:208-217. doi: 10.1016/j.fuel.2015.11.058
KWON D, YANG I, SIM Y, HA J M, JUNG J C. A K2NiF4-type La2Li0.5Al0.5O4 catalyst for the oxidative coupling of methane (OCM)[J]. Catal Commun, 2019,128:1-5.
PAK S, LUNSFORD J H. Thermal effects during the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts[J]. Appl Catal A:Gen, 1998,168(1):131-137. doi: 10.1016/S0926-860X(97)00340-2
Li Peng, ZHANG Ming-sen, WU Jie-hua. Research progress on mechanism and kinetics of methane oxidation coupling to ethylene production[J]. Petrochem Technol (China), 2018,47(9):1005-1012.
GAMBO Y, JALIL A A, TRIWAHYONO S, ABDULRASHEED A A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene:A review[J]. J Ind Eng Chem, 2018,59:218-229. doi: 10.1016/j.jiec.2017.10.027
KIM I, LEE G, NA H B, HA J M, JUNG J C. Selective oxygen species for the oxidative coupling of methane[J]. Mol Catal, 2017,435:13-23. doi: 10.1016/j.mcat.2017.03.012
TANG Xin-de, YE Hong-qi, MA Chen-xia, LIU Hui. Structure, preparation and photocatalytic properties of pyroclastic oxide[J]. Chem Ind Eng Prog, 2009,21(10):2100-2114.
XU J, ZHANG Y, XU X, FANG X, XI R, LIU Y, ZHENG R, WANG X. Constructing La2B2O7 (B=Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane:The effect of phase structures, superoxide anions, and alkalinity on the reactivity[J]. ACS Catal, 2019,9(5):4030-4045. doi: 10.1021/acscatal.9b00022
MINERVINI L G R W, SICKAFUS K E. Disorder in pyrochlore oxides[J]. J Am Ceram Soc, 2000,83(8):1873-1878.
LANG M, ZHANG F, ZHANG J, WANG J, LIAN J, WEBER W J, SCHUSTER B, TRAUTMANN C, NEUMANN R, EWING R C. Review of A2B2O7 pyrochlore response to irradiation and pressure[J]. Nucl Instrum Methods Phys Ressect B, 2010,268(19):2951-2959. doi: 10.1016/j.nimb.2010.05.016
SHAFIQUE M, KENNEDY B J, IQBAL Y, UBIC R. The effect of B-site substitution on structural transformation and ionic conductivity in Ho2(ZryTi1-y)(2)O7[J]. J Alloy Compd, 2016,671:226-233. doi: 10.1016/j.jallcom.2016.02.087
ASHCROFT A T, CHEETHAM A K, GREEN M L H, GREY C P, VERNON P D F. Oxidative coupling of methane over tin-containing rare-earth pyrochlores[J]. J Chem Soc:Chem Commun, 1989(21):1667-1669. doi: 10.1039/c39890001667
PETIT C, REHSPRINGER J L, KADDOURI A, LIBS S, POIX P, KIENNEMANN A. Bond energy effects in methane oxidative coupling on phrochlore structures[J]. J Catal, 1993,140:328-334. doi: 10.1006/jcat.1993.1087
XU J, PENG L, FANG X, FU Z, LIU W, XU X, PENG H, ZHENG R, WANG X. Developing reactive catalysts for low temperature oxidative coupling of methane:On the factors deciding the reaction performance of Ln2Ce2O7 with different rare earth A sites[J]. Appl Catal A:Gen, 2018,552:117-128. doi: 10.1016/j.apcata.2018.01.004
FANG X, XIA L, PENG L, LUO Y, XU J, XU L, XU X, LIU W, ZHENG R, WANG X. Ln2Zr2O7 compounds (Ln=La, Pr, Sm, Y) with varied rare earth A sites for low temperature oxidative coupling of methane[J]. Chin Chem Lett, 2019,30(6):1141-1146. doi: 10.1016/j.cclet.2019.03.031
CHEN H, GAO Y, LIU Y, LUO H. Coprecipitation synthesis and thermal conductivity of La2Zr2O7[J]. J Alloy Compd, 2009,480(2):843-848. doi: 10.1016/j.jallcom.2009.02.081
KONG L, KARATCHEVTSEVA I, GREGG D J, BLACKFORD M G, HOLMES R, TRIANI G, VANDERAH T. A novel chemical route to prepare La2Zr2O7 pyrochlore[J]. J Am Ceram Soc, 2013,96(3):935-941. doi: 10.1111/jace.12060
TONG Y, LU L, YANG X, WANG X. Characterization and their photocatalytic properties of Ln2Zr2O7 (Ln=La, Nd, Sm, Dy, Er) nanocrystals by stearic acid method[J]. Solid State Sci, 2008,10(10):1379-1383. doi: 10.1016/j.solidstatesciences.2008.01.027
CHARTIER A, MEIS C, WEBER W J, CORRALES L R. Theoretical study of disorder in Ti-substituted La2Zr2O7[J]. Phys Rev B, 2002,65(13).
WILDE P J, CATLOW C R A. Defects and diffusion in pyrochlore structured oxides[J]. Solid State Ion, 1998,112(3/4):173-183.
MICHEL D, PEREZYJORBA M, COLLONGUES R. Study by Raman-spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures[J]. J Raman Spectrosc, 1976,5(2):163-180. doi: 10.1002/jrs.1250050208
WANG Lie-lin, XIE Hua, JIANG Kuo, DENG Chao, LONG Yong, KANG Xiao-qing, MI Guo-yuan. Synthesis and structure analysis of pyrochlore An_2Zr_2O_7(An=La、Nd) by spray pyrolysis[J]. J Nucl Radiochem, 2014,36(4):241-246.
DUBOIS J L, CAMERON C J. Common features of oxidative coupling of methane cofeed catalysts[J]. Appl Catal, 1990,67(1):49-71.
CHOUDHARY V R, RANE V H. Acidity basicity of rare-earth-oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons[J]. J Catal, 1991,130(2):411-422.
PAPA F, LUMINITA P, OSICEANU P, BIRJEGA R, AKANE M, BALINT I. Acid-base properties of the active sites responsible for C2+ and CO2 formation over MO-Sm2O3 (M=Zn, Mg, Ca and Sr) mixed oxides in OCM reaction[J]. J Mol Catal A:Chem, 2011,346(1/2):46-54.
PENG L, XU J, FANG X, LIU W, XU X, LIU L, LI Z, PENG H, ZHENG R, WANG X. SnO2 Based catalysts with low-temperature performance for oxidative coupling of methane:Insight into the promotional effects of alkali-metal oxides[J]. Eur J Inorg Chem, 2018,2018(17):1787-1799. doi: 10.1002/ejic.201701440
ELKINS T W, ROBERTS S J, HAGELIN-WEAVER H E. Effects of alkali and alkaline-earth metal dopants on magnesium oxide supported rare-earth oxide catalysts in the oxidative coupling of methane[J]. Appl Catal A:Gen, 2016,528:175-190. doi: 10.1016/j.apcata.2016.09.011
FERREIRA V J, TAVARES P, FIGUEIREDO J L, FARIA J L. Ce-Doped La2O3 based catalyst for the oxidative coupling of methane[J]. Catal Commun, 2013,42:50-53. doi: 10.1016/j.catcom.2013.07.035
ZHANG Y, XU J, XU X, XI R, LIU Y, FANG X, WANG X. Tailoring La2Ce2O7 catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods[J]. Catal Today, 2019.
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
(a): LZO-CP-700; (b): LZO-CP-800; (c): LZO-CP-1000; (d): LZO-CP-1200
(a): oxygen conversion; (b): methane conversion; (c): C2+ selectivity; (d): C2+ yield reaction conditions: 0.4g, CH4:O2:N2=3:1:1, GHSV=20000 mL/(h ·gcat)