Citation: Hu Shuxian. Theoretical Studies on Electronic Structure and Chemical Bonding of Actinyl Crown Ether Complexes[J]. Chemistry, ;2020, 83(2): 105-110. shu

Theoretical Studies on Electronic Structure and Chemical Bonding of Actinyl Crown Ether Complexes

  • Received Date: 27 October 2019
    Accepted Date: 10 November 2019

Figures(5)

  • In this mini-review, we have briefly summarized the theoretical research on geometrical structures and coordination chemistry of actinide complexes, the electronic structures of actinyl-crown-ether complexes, and the basic principle for chemical bonding of actinyl complexes. Although increasingly numerous spectroscopy and crystallography data had been available experimentally, there were lack of systematic investigations on theoretically electronic structure and chemical bonding of actinide complexes. Herein reviewed are our recently works from computational chemistry modeling on the coordination structures, stabilization energies and spectra properties of actinyl-crown-ether complexes. Our research has shown that the in-cavity complexes and their bonding features between (thio)-crown ethers and f-elements exhibit conventional conformations, with typical An≡Oactinyl and An-Oligand and An-Sligand distances. The typical ionic An-Oligand and An-Sligand bonds with an extent of covalent interaction between the An and ligand donor atoms primarily attributable to the overlap degree of radial distribution of valence atomic orbitals. From U to Cm, LMCT is gradually significant, resulting in the decrease of the formal oxidation state of Am and Cm, and the weakening of the interaction between metal ions and ligands. This periodicity of chemical bonding and the metal oxidation state provide fundamental guidance for the design of reasonable and efficient ligands in the application of lanthanide-actinide separation.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

      Vidaud C, Bourgeois D, Meyer D. Chem. Res. Toxicol., 2012, 25(6): 1161~1175. 

    5. [5]

       

    6. [6]

      Gokel G W, Leevy W M, Weber M E. Chem. Rev., 2004, 104: 2723~2750. 

    7. [7]

      Pedersen C J, Frensdor H K. Angew. Chem. Int. Ed., 1972, 11: 16~25. 

    8. [8]

      Cooper T E, Carl D R, Oomens J, et al. J. Phys. Chem. A 2011, 115: 5408~5422. 

    9. [9]

      Servaes K, De Houwer S, Görller-Walrand C, et al. Phys. Chem. Chem. Phys., 2004, 6: 2946~2950. 

    10. [10]

      Shamov G A, Schreckenbach G, Martin R L, et al. Inorg. Chem., 2008, 47: 1465~1475. 

    11. [11]

      Gong Y, Gibson J K. Inorg. Chem., 2014, 53: 5839~5844. 

    12. [12]

      Hu S X, Gibson J K, Li W L, et al. Chem. Commun., 2016, 52: 12761~12764. 

    13. [13]

      Hu S X, Chen M, Ao B. Phys. Chem. Chem. Phys., 2018, 20: 23856~23863.

    14. [14]

      Hu S X, Liu H T, Liu J J, et al. ACS Omega, 2018, 3(10): 13902~13912.

    15. [15]

      Jian J W, Hu S X, Li W L, et al. Inorg. Chem., 2018, 57(7): 4125~4134.

    16. [16]

      Hu S X, Liu J J, Gibson J K, et al. Inorg. Chem., 2018, 57(5): 2899~2907. 

    17. [17]

      Hu S X, Li L W, Dong L, et al. Dalton Transac., 2017, 46(36): 12354~12363.

    18. [18]

      Hu S X, Gibson J K, Li W L, et al. Chem. Commun., 2016, 52(86): 12761~12764.

    19. [19]

      Hu S X, Lu E, Liddle S T. Dalton Transac., 2019, 48(34): 12867~12879.

    20. [20]

      Qin J, Zhang P, Pu Z, et al. J. Phys. Chem. A, 2019, 123(32): 6958~6969.

    21. [21]

      Hu S X, Jian J, Li J, et al. Inorg. Chem., 2019, 58(15): 10148~10159.

    22. [22]

      Pepper M, Bursten B E. Chem. Rev., 1991, 91: 719~741. 

    23. [23]

      Kovacs A, Konings R J M, Gibson J K, et al. Chem. Rev. 2015, 115(4): 1725~1759. 

    24. [24]

      Marcalo J, Gibson J K. J. Phys. Chem. A, 2009, 113(45): 12599~12606. 

    25. [25]

      Pyykkö P, Li J, Runeberg N. J. Phys. Chem., 1994, 98(18): 4809~4813. 

    26. [26]

      Kovácsa A, Konings R J M. J. Mol. Struct., 2004, 684(1/3): 35~42.

    27. [27]

      Liu J B. Chen G P. Huang W, et al. Dalton Transac., 2017, 46: 2542~2550.

    28. [28]

      Su J, Dau P D, Liu H T, et al. J. Chem. Phys., 2015, 142(13): 134308.

    29. [29]

      Fujii T, Uehara A.; Kitatsuji Y, et al. J. Radioanal. Nucl. Chem., 2015, 303(1): 1015~1020.

    30. [30]

      Lan J H, Wang C Z, Wu Q Y, et al. J. Phys. Chem. A, 2015, 119(34): 9178~9188.

    31. [31]

      Shamov G A. J. Am. Chem. Soc., 2011, 133(12): 4316~4329. 

    32. [32]

      Wang Y L, Liu Z Y, Li Y X, et al. J. Am. Chem. Soc., 2015, 137(19): 6144~6147.

    33. [33]

      Neuefeind J, Soderholm L, Skanthakumar S. J. Phys. Chem. A, 2004, 108: 2733~2739. 

    34. [34]

      Kovács A, Pogany P, Konings R. Inorg. Chem., 2012, 51(8): 4841~4849. 

    35. [35]

      Sokolova M N, Fedosseev A M, Andreev G B, et al. Inorg. Chem., 2009, 48(19): 9185~9190. 

    36. [36]

      Burns C J, Bursten B E. Comment. Inorg. Chem., 1989, 9(2): 61~93. 

    37. [37]

      Bursten B E, Palmer E J, Sonnenberg J L. Special Publication-Royal Society of Chemistry, 2006, 305(1): 157~162. 

  • 加载中
    1. [1]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    7. [7]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    10. [10]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    16. [16]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    17. [17]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    18. [18]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    19. [19]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(25)
  • Abstract views(1079)
  • HTML views(335)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return