Citation: WEN Xiong, ZHANG Yu-hua, LIU Cheng-chao, HONG Jing-ping, WEI Liang, CHEN Yao, LI Jin-lin. Performance of hierarchical ZSM-5 supported cobalt catalyst in the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 950-955. shu

Performance of hierarchical ZSM-5 supported cobalt catalyst in the Fischer-Tropsch synthesis

  • Corresponding author: LI Jin-lin, jinlinli@aliyun.com
  • Received Date: 3 May 2017
    Revised Date: 12 June 2017

    Fund Project: The project was supported by National Natural Science Foundation of China 21203253The project was supported by National Natural Science Foundation of China (21203253, 21473259)The project was supported by National Natural Science Foundation of China 21473259

Figures(8)

  • Uniform ZSM-5 nanoparticles (around 180 nm) were synthesized by steam assisted crystallization method (SAC), which have a hierarchically porous structure, composed of abundant open mesopores from the stacking of ZSM-5 particles and micropores in the ZSM-5 crystallites. The hierarchical ZSM-5 supported cobalt catalyst, with a cobalt loading of 15%, was then prepared through incipient impregnation and used in Fischer-Tropsch synthesis (FTS). The hierarchical ZSM-5 support and Co-based catalyst were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 sorption. The results indicate that the hierarchical ZSM-5 supported cobalt catalyst performs excellently in FTS, since the mesoporous structure in the hierarchical ZSM-5 support can enhance the mass transfer of the reaction products and the acid sites on the microporous ZSM-5 framework can promote the hydrocracking of long chain hydrocarbon products. In comparison with the cobalt catalysts supported on bulk ZSM-5 and commercial ZSM-5, the hierarchical ZSM-5 supported cobalt catalyst exhibits much higher activity in FTS, lower selectivity to CH4, and higher selectivity to C5-20 hydrocarbons (68.9%).
  • 加载中
    1. [1]

      SIE S T, SENDEN M M G, WECHEM H M H V. Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS)[J]. Catal Today, 1991,8(3):371-394. doi: 10.1016/0920-5861(91)80058-H

    2. [2]

      JAGER B, ESPINOZA R. Advances in low temperature Fischer-Tropsch synthesis[J]. Catal Today, 1995,23(1):17-28. doi: 10.1016/0920-5861(94)00136-P

    3. [3]

      KONG Xia, HOU Bo, JIA Li-tao, HUANG Wei, SUN Zhi-qiang, LI De-bao, LI Jin-ping. Effect of A12O3 addition on the catalytic performance of Co/SiC catalyst for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2013,41(10):1217-1222.  

    4. [4]

      CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev, 1997,97(6):2373-2420. doi: 10.1021/cr960406n

    5. [5]

      DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002,417(6891):813-821. doi: 10.1038/nature00785

    6. [6]

      KANG J, CHENG K, ZHANG L, ZHANG Q, DING J, HUA W, LOU Y, ZHAI Q, WANG Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins[J]. Angew Chem Int Edit, 2011,50(22):5200-5203. doi: 10.1002/anie.v50.22

    7. [7]

      JANSSEN A H. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003,45(2):297-319. doi: 10.1081/CR-120023908

    8. [8]

      CHEN S, WANG C, LI J, ZHANG Y, HONG J, WEN X, LIU C. ZSM-5 seed-grafted SBA-15 as a high performance support for cobalt Fischer-Tropsch synthesis catalysts[J]. Catal Sci Technol, 2015,5(11):4985-4990. doi: 10.1039/C5CY00491H

    9. [9]

      LI J, LI X, ZHOU G, WANG W, WANG C, KOMARNENI S, WANG Y. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J]. Appl Catal A: Gen, 2014,470(2):115-122.  

    10. [10]

      XIN H, LI X, YUAN F, YI X, HU W, CHU Y, ZHANG F, ZHENG A, ZHANG H, LI X. Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites[J]. J Catal, 2014,312(1):204-215.  

    11. [11]

      YANG Jian-hua, YU Su-xia, HU Hui-ye, CHU Nai-bo, LU Jin-ming, YIN De-hong, WANG Jin-qu. Synthesis of hierarchical HZSM-5 microspheres without second template and their application in methane dehydroaromatization[J]. Chin J Catal, 2011,32(2):362-367.  

    12. [12]

      JIN H, ANSARI M B, JEONG E Y, PARK S E. Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5[J]. J Catal, 2012,291(7):55-62.  

    13. [13]

      HUANG C H, LIU S J, HWANG W S. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)[J]. Energy, 2011,36(7):4410-4414. doi: 10.1016/j.energy.2011.04.002

    14. [14]

      GIRARDON J S, CONSTANT-GRIBOVAL A, GENGEMBRE L, CHERNAVSKⅡ P A, KHODAKOV A Y. Optimization of the pretreatment procedure in the design of cobalt silica supported Fischer-Tropsch catalysts[J]. Catal Today, 2005,106(1/4):161-165.  

    15. [15]

      SARTIPI S, ALBERTS M, MEIJERINK M J, KELLER T C, PÉREZ-RAMÍREZ J, GASCON J, KAPTEIJN F. Towards liquid fuels from biosyngas: Effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts[J]. Chem Sus Chem, 2013,6(9):1646-1650. doi: 10.1002/cssc.201300339

    16. [16]

      LI J, XU Y, WU D, SUN Y. Hollow mesoporous silica sphere supported cobalt catalysts for F-T synthesis[J]. Catal Today, 2009,148(1/2):148-152.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    3. [3]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    5. [5]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(7)
  • Abstract views(2030)
  • HTML views(529)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return