锂硫电池用石墨烯基材料的研究进展

陈克 孙振华 方若翩 李峰 成会明

引用本文: 陈克, 孙振华, 方若翩, 李峰, 成会明. 锂硫电池用石墨烯基材料的研究进展[J]. 物理化学学报, 2018, 34(4): 377-390. doi: 10.3866/PKU.WHXB201709001 shu
Citation:  CHEN Ke, SUN Zhenhua, FANG Ruopian, LI Feng, CHENG Huiming. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinica, 2018, 34(4): 377-390. doi: 10.3866/PKU.WHXB201709001 shu

锂硫电池用石墨烯基材料的研究进展

    作者简介:


    李峰,1971年生于辽宁,1995年毕业于南京工业大学。中国科学院金属研究所研究员,主要从事电化学能源储存与转换用材料研究,2016年入选高被引科学家(材料类);
    成会明,1963年生于四川,毕业于湖南大学。中国科学院金属研究所研究员、中国科学院院士,主要从事新型炭材料及能源材料的研究,多次入选高被引科学家(材料和化学两个领域);
    通讯作者: 李峰, fli@imr.ac.cn; 成会明, cheng@imr.ac.cn
  • 基金项目:

    国家重点研发计划(2016YFA0200102, 2016YFB0100100, 2014CB932402),国家自然科学基金项目(51525206, 51521091, 51372253, U1401243),中科院先导专项(XDA09010104),中国科学院重大突破择优支持项目(KGZD-EW-T06),中国科学院青年创新促进会项目(2015150),辽宁省自然科学基金(2015021012),中科院金属研究所创新基金(2015-PY03)和创新团队国际合作伙伴计划资助

摘要: 锂硫电池因其理论能量密度高、资源丰富和环境友好等优势,被认为是最有发展前景的下一代电化学储能系统之一。然而,硫的绝缘性、充放电中间产物多硫化物的溶解和扩散、硫的体积膨胀以及锂负极安全性等问题,严重制约着锂硫电池的商业应用。石墨烯因其具有高导电、高柔性等诸多优异特性而被广泛研究,将其用于锂硫电池的正极载体、隔膜涂层和集流体中,以期实现高比能、高稳定性的锂硫电池。本文综述了石墨烯基材料,包括石墨烯、功能化石墨烯、掺杂石墨烯和石墨烯复合物,在锂硫电池中应用的研究进展,并展望了锂硫电池用石墨烯基材料的未来发展方向。

English

    1. [1]

      Manthiram, A.; Fu, Y. Z.; Su, Y. S. Acc. Chem. Res. 2013, 46, 1125. doi: 10.1021/ar300179v

    2. [2]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19. doi: 10.1038/nmat3191

    3. [3]

      Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. Adv. Mater. 2017, 29, 1606823. doi: 10.1002/adma.201606823

    4. [4]

      Yu, M.; Li, R.; Wu, M.; Shi, G. Energy Storage Materials 2015, 1, 51. doi: 10.1016/j.ensm.2015.08.004

    5. [5]

      Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460

    6. [6]

      Fang, R. P.; Zhao, S. Y.; Pei, S. F.; Qian, X.; Hou, P. X.; Cheng, H. M.; Liu, C.; Li, F. ACS Nano 2016, 10, 8676. doi: 10.1021/acsnano.6b04019

    7. [7]

      Wang, D. W.; Zhou, G. M.; Li, F.; Wu, K. H.; Lu, G. Q.; Cheng, H. M.; Gentle, I. R. Phys. Chem. Chem. Phys. 2012, 14, 8703. doi: 10.1039/c2cp40808b

    8. [8]

      Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Nano Lett. 2011, 11, 2644. doi: 10.1021/nl200658a

    9. [9]

      Su, Y. S.; Manthiram, A. Nat. Commun. 2012, 3, 6. doi: 10.1038/ncomms2163

    10. [10]

      Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S.; Li, F.; Cheng, H. M. Adv. Mater. 2015, 27, 641. doi: 10.1002/adma.201404210

    11. [11]

      Song, R. S.; Fang, R. P.; Wen, L.; Shi, Y.; Wang, S.; Li, F. J. Power Sources 2016, 301, 179. doi: 10.1016/j.jpowsour.2015.10.007

    12. [12]

      Liang, J.; Yin, L. C.; Tang, X. N.; Yang, H. C.; Yan, W. S.; Song, L.; Cheng, H. M.; Li, F. ACS Appl. Mater. Interfaces 2016, 8, 25193. doi: 10.1021/acsami.6b05647

    13. [13]

      Duan, B. C.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Yu, Z. B.; Zhao, H. L.; Qiu, J. Y.; Yang, Y. S. J. Mater. Chem. A 2013, 1, 13261. doi: 10.1039/c3ta12634j

    14. [14]

      唐晓楠, 孙振华, 陈克, 杨慧聪, 禚淑萍, 李峰.储能科学与技术, 2017, 6, 345. doi: 10.12028/j.issn.2095-4239.2017.0018Tang, X. N.; Sun, Z. H.; Chen K.; Yang, H. C.; Zhuo, S. P.; Li, F. Energy Storage Science and Technology 2017, 6, 345. doi: 10.12028/j.issn.2095-4239.2017.0018

    15. [15]

      Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Adv. Energy Mater. 2014, 4, 8. doi: 10.1002/aenm.201301473

    16. [16]

      Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. ACS Nano 2014, 8, 9295. doi: 10.1021/nn503220h

    17. [17]

      李君涛, 吴娇红, 张涛, 黄令.物理化学学报, 2017, 33, 968. doi: 10.3866/PKU.WHXB201702093Li, J.; Wu, J.; Zhang, T.; Huang, L. Acta Phys. -Chim. Sin. 2017, 33, 968. doi: 10.3866/PKU.WHXB201702093

    18. [18]

      Zhou, G.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. M. Energy Environ. Sci. 2012, 5, 8901. doi: 10.1039/c2ee22294a

    19. [19]

      Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. Adv. Mater. 2016, 28, 3374. doi: 10.1002/adma.201506014

    20. [20]

      Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Nano Lett. 2011, 11, 4462. doi: 10.1021/nl2027684

    21. [21]

      Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H. M. Nano Energy 2015, 11, 356. doi: 10.1016/j.nanoen.2014.11.025

    22. [22]

      Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. Adv. Mater. 2014, 26, 625. doi: 10.1002/adma.201302877

    23. [23]

      Zhou, G. M.; Y, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. ACS Nano 2013, 7, 5367. doi: 10.1021/nn401228t

    24. [24]

      李庆洲, 李玉惠, 李亚娟, 刘又年.物理化学学报, 2014, 30, 1474. doi: 10.3866/PKU.WHXB201406041Li, Q. Z.; Li, Y. H.; Li, Y. J.; Liu, Y. N. Acta Phys. -Chim. Sin. 2014, 30, 1474. doi: 10.3866/PKU.WHXB201406041

    25. [25]

      Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Angew. Chem. Int. Ed. 2012, 51, 9592. doi: 10.1002/anie.201205292

    26. [26]

      He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. ACS Nano 2013, 7, 10920. doi: 10.1021/nn404439r

    27. [27]

      Yang, Y.; Yu, G. H.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z. A.; Cui, Y. ACS Nano 2011, 5, 9187. doi: 10.1021/nn203436j

    28. [28]

      Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Nat. Commun. 2017, 8, 8. doi: 10.1038/ncomms14627

    29. [29]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058

    30. [30]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotech. 2016, 11, 626. doi: 10.1038/nnano.2016.32

    31. [31]

      Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y. M.; Cui, Y. Nat. Commun. 2015, 6, 7436. doi: 10.1038/ncomms8436

    32. [32]

      Zhao, C. Z.; Cheng, X. B.; Zhang, R.; Peng, H. J.; Huang, J. Q.; Ran, R.; Huang, Z. H.; Wei, F.; Zhang, Q. Energy Storage Materials 2016, 3, 77. doi: 10.1016/j.ensm.2016.01.007

    33. [33]

      Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602. doi: 10.1103/PhysRevLett.100.016602

    34. [34]

      Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877

    35. [35]

      梁骥; 闻雷; 成会明; 李峰.电化学, 2015, 21, 505. doi: 10.13208/j.electrochem.150845Liang, J.; Wen, L.; Cheng, H. M.; Li, F. J. Electrochem. 2015, 21, 505. doi: 10.13208/j.electrochem.150845

    36. [36]

      Wang, D. W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. M.; Gentle, I. R.; Lu, G. Q. M. J. Mater. Chem. A 2013, 1, 9382. doi: 10.1039/c3ta11045a

    37. [37]

      Cuisinier, M.; Cabelguen, P. E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. J. Phys. Chem. Lett. 2013, 4, 3227. doi: 10.1021/jz401763d

    38. [38]

      Lv, W.; Li, Z.; Deng, Y.; Yang, Q. H.; Kang, F. Energy Storage Materials 2016, 2, 107. doi: 10.1016/j.ensm.2015.10.002

    39. [39]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896

    40. [40]

      Pu, N. W.; Wang, C. A.; Sung, Y.; Liu, Y. M.; Ger, M. D. Mater. Lett. 2009, 63, 1987. doi: 10.1016/j.matlet.2009.06.031

    41. [41]

      Liu, X.; Liu, J.; Zhan, D.; Yan, J.; Wang, J.; Chao, D.; Lai, L.; Chen, M.; Yin, J.; Shen, Z. RSC Adv. 2013, 3, 11601. doi: 10.1039/c3ra22673e

    42. [42]

      Chen, I. W. P.; Chen, Y. S.; Kao, N. J.; Wu, C. W.; Zhang, Y. W.; Li, H. T. Carbon 2015, 90, 16. doi: 10.1016/j.carbon.2015.03.067

    43. [43]

      Parvez, K.; Yang, S.; Feng, X.; Müllen, K. Synthetic Met. 2015, 210, 123. doi: 10.1016/j.synthmet.2015.07.014

    44. [44]

      Wei, Y.; Sun, Z. Curr. Opin. Colloid In. 2015, 20, 311. doi: 10.1016/j.cocis.2015.10.010

    45. [45]

      Singh, R. K.; Kumar, R.; Singh, D. P. RSC Adv. 2016, 6, 64993. doi: 10.1039/c6ra07626b

    46. [46]

      Yang, S.; Lohe, M. R.; Mullen, K.; Feng, X. Adv. Mater. 2016, 28, 6213. doi: 10.1002/adma.201505326

    47. [47]

      Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H. K. J. Power Sources 2011, 196, 7030. doi: 10.1016/j.jpowsour.2010.09.106

    48. [48]

      Cao, Y.; Li, X.; Aksay, I. A.; Lemmon, J.; Nie, Z.; Yang, Z.; Liu, J. Phys. Chem. Chem. Phys. 2011, 13, 7660. doi: 10.1039/c0cp02477e

    49. [49]

      Wei, Z. K.; Chen, J. J.; Qin, L. L.; Nemage, A. W.; Zheng, M. S.; Dong, Q. F. J. Electrochem. Soc. 2012, 159, A1236. doi: 10.1149/2.048208jes

    50. [50]

      Evers, S.; Nazar, L. F. Chem. Commun(Camb). 2012, 48, 1233. doi: 10.1039/c2cc16726c

    51. [51]

      Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X.; Qiu, Y.; Yang, S. Nano Res. 2012, 5, 726. doi: 10.1007/s12274-012-0257-7

    52. [52]

      Jin, J.; Wen, Z.; Ma, G.; Lu, Y.; Cui, Y.; Wu, M.; Liang, X.; Wu, X. Rsc Adv. 2013, 3, 2558. doi: 10.1039/c2ra22808d

    53. [53]

      Wang, C.; Wang, X.; Wang, Y.; Chen, J.; Zhou, H.; Huang, Y. Nano Energy 2015, 11, 678. doi: 10.1016/j.nanoen.2014.11.060

    54. [54]

      Wang, C.; Wang, X.; Yang, Y.; Kushima, A.; Chen, J.; Huang, Y.; Li, J. Nano Lett. 2015, 15, 1796. doi: 10.1021/acs.nanolett.5600112

    55. [55]

      Xu, C.; Wu, Y.; Zhao, X.; Wang, X.; Du, G.; Zhang, J.; Tu, J. J. Power Sources 2015, 275, 22. doi: 10.1016/j.jpowsour.2014.11.007

    56. [56]

      Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q.; Duan, X. F. Nano Res. 2016, 9, 240. doi: 10.1007/s12274-016-1005-1

    57. [57]

      Xi, K.; Kidambi, P. R.; Chen, R.; Gao, C.; Peng, X.; Ducati, C.; Hofmann, S.; Kumar, R. V. Nanoscale 2014, 6, 5746. doi: 10.1039/c4nr00326h

    58. [58]

      Lu, S.; Chen, Y.; Wu, X.; Wang, Z.; Li, Y. Sci. Rep. 2014, 4, 4629. doi: 10.1038/srep04629

    59. [59]

      Liu, Y.; Guo, J.; Zhang, J.; Su, Q.; Du, G. Appl. Surf. Sci. 2015, 324, 399. doi: 10.1016/j.apsusc.2014.10.176

    60. [60]

      Lin, T. Q.; Tang, Y. F.; Wang, Y. M.; Bi, H.; Liu, Z. Q.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Energy Environ. Sci. 2013, 6, 1283. doi: 10.1039/c3ee24324a

    61. [61]

      Xu, H.; Deng, Y.; Shi, Z.; Qian, Y.; Meng, Y.; Chen, G. J. Mater. Chem. A 2013, 1, 15142. doi: 10.1039/c3ta13541a

    62. [62]

      Peng, H. J.; Liang, J.; Zhu, L.; Huang, J. Q.; Cheng, X. B.; Guo, X.; Ding, W.; Zhu, W.; Zhang, Q. ACS Nano 2014, 8, 11280. doi: 10.1021/nn503985s

    63. [63]

      Li, Z.; Zhang, S.; Zhang, C.; Ueno, K.; Yasuda, T.; Tatara, R.; Dokko, K.; Watanabe, M. Nanoscale 2015, 7, 14385. doi: 10.1039/c5nr03201f

    64. [64]

      Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo. Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z.; Chan, H. L. W.; Wang, Y. Adv. Mater. 2015, 27, 5936. doi: 10.1002/adma.201502668

    65. [65]

      Bao, W. Z.; Zhang, Z. A.; Qu, Y. H.; Zhou, C. K.; Wang, X. W.; Li, J. J. Alloy. Compd. 2014, 582, 334. doi: 10.1016/j.jallcom.2013.08.056

    66. [66]

      Wu, H.; Huang, Y.; Zong, M.; Fu, H.; Sun, X. Electrochim. Acta 2015, 163, 24. doi: 10.1016/j.electacta.2015.02.131

    67. [67]

      Xu, J.; Shui, J.; Wang, J.; Wang, M.; Liu, H. K.; Dou, S. X.; Jeon, I. Y.; Seo, J. M.; Baek, J. B.; Dai, L. ACS Nano 2014, 8, 10920. doi: 10.1021/nn5047585

    68. [68]

      Li, H.; Yang, X.; Wang, X.; Liu, M.; Ye, F.; Wang, J.; Qiu, Y.; Li, W.; Zhang, Y. Nano Energy 2015, 12, 468. doi: 10.1016/j.nanoen.2015.01.007

    69. [69]

      Li, B.; Li, S.; Liu, J.; Wang, B.; Yang, S. Nano Lett. 2015, 15, 3073. doi: 10.1021/acs.nanolett.5b00064

    70. [70]

      Shi, J. L.; Peng, H. J.; Zhu, L.; Zhu, W.; Zhang, Q. Carbon 2015, 92, 96. doi: 10.1016/j.carbon.2015.03.031

    71. [71]

      Huang, X.; Sun, B.; Li, K.; Chen, S.; Wang, G. J. Mater. Chem. A 2013, 1, 13484. doi: 10.1039/c3ta12826a

    72. [72]

      Zhai, P. Y.; Peng, H. J.; Cheng, X. B.; Zhu, L.; Huang, J. Q.; Zhu, W.; Zhang, Q. Energy Storage Materials 2017, 7, 56. doi: 10.1016/j.ensm.2016.12.004

    73. [73]

      Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. Adv. Funct. Mater. 2016, 26, 577. doi: 10.1002/adfm.201503726

    74. [74]

      Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373. doi: 10.1021/acsnano.5b01990

    75. [75]

      Su, Y. S.; Manthiram, A. Chem. Commun. 2012, 48, 8817. doi: 10.1039/c2cc33945e

    76. [76]

      Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. Adv. Sci. 2016, 3, 1500268. doi: 10.1002/advs.201500268

    77. [77]

      Huang, J. Q.; Zhang, Q.; Wei, F. Energy Storage Materials 2015, 1, 127. doi: 10.1016/j.ensm.2015.09.008

    78. [78]

      Wang, X. F.; Wang, Z. X.; Chen, L. Q. J. Power Sources 2013, 242, 65. doi: 10.1016/j.jpowsour.2013.05.063

    79. [79]

      闻雷, 陈静, 罗洪泽, 李峰.科学通报, 2015, 60, 630. doi: 10.1360/N972014-01053Wei, L.; Chen, J.; Luo, H. Z.; Li, F. Chin. Sci. Bull. 2015, 60, 630. doi: 10.1360/N972014-01053

    80. [80]

      Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2011, 133, 18522. doi: 10.1021/ja206955k

    81. [81]

      Xiao, M.; Huang, M.; Zeng, S.; Han, D.; Wang, S.; Sun, L.; Meng, Y. RSC Adv. 2013, 3, 4914. doi: 10.1039/c3ra00017f

    82. [82]

      Rong, J.; Ge, M.; Fang, X.; Zhou, C. Nano Lett. 2014, 14, 473. doi: 10.1021/nl403404v

    83. [83]

      Liu, S.; Xie, K.; Li, Y.; Chen, Z.; Hong, X.; Zhou, L.; Yuan, J.; Zheng, C. Rsc Adv. 2015, 5, 5516. doi: 10.1039/c4ra12393j

    84. [84]

      Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. ACS Nano 2015, 9, 3002. doi: 10.1021/nn507178a

    85. [85]

      Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Nat. Energy 2016, 1, 16094. doi: 10.1038/nenergy.2016.94

    86. [86]

      Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Small 2016, 12, 381. doi: 10.1002/smll.201503133

    87. [87]

      Zhou, L.; Lin, X.; Huang, T.; Yu, A. J. Mater. Chem. A 2014, 2, 5117. doi: 10.1039/c3ta15175a

    88. [88]

      Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Wu, H. B.; Hao, C.; Liu, S.; Qiu, J.; Lou, X. W. Nat. Commun. 2014, 5, 5002. doi: 10.1038/ncomms6002

    89. [89]

      Zhou, G.; Paek, E.; Hwang, G. S.; Manthiram, A. Adv. Energy Mater. 2016, 6, 1501355. doi: 10.1002/aenm.201501355

    90. [90]

      Xie, Y.; Meng, Z.; Cai, T.; Han, W. Q. ACS Appl. Mater. Inter. 2015, 7, 25202. doi: 10.1021/acsami.5b08129

    91. [91]

      Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H.; Yang, S. H.; Duan, W. H.; Ye, Y. F.; Guo, J. H.; Zhang, Y. G. Nano Lett. 2014, 14, 4821. doi: 10.1021/nl5020475

    92. [92]

      Niu, S.; Lv, W.; Zhang, C.; Li, F.; Tang, L.; He, Y.; Li, B.; Yang, Q. H.; Kang, F. J. Mater. Chem. A 2015, 3, 20218. doi: 10.1039/c5ta05324b

    93. [93]

      Song, J.; Yu, Z.; Gordin, M. L.; Wang, D. Nano Lett. 2016, 16, 864. doi: 10.1021/acs.nanolett.5b03217

    94. [94]

      Li, L.; Zhou, G. M.; Yin, L. C.; Koratkar, N.; Li, F.; Cheng, H. M. Carbon 2016, 108, 120. doi: 10.1016/j.carbon.2016.07.008

    95. [95]

      Yin, L. C.; Liang, J.; Zhou, G. M.; Li, F.; Saito, R.; Cheng, H. M. Nano Energy 2016, 25, 203. doi: 10.1016/j.nanoen.2016.04.053

    96. [96]

      Ma, Z.; Dou, S.; Shen, A.; Tao, L.; Dai, L.; Wang, S. Angew. Chem. Int. Ed. 2015, 54, 1888. doi: 10.1002/anie.201410258

    97. [97]

      Yuan, X. Q.; Liu, B. C.; Hou, H. J.; Zeinu, K.; He, Y. H.; Yang, X. R.; Xue, W. J.; He, X.L.; Huang, L.; Zhu, X. L.; Wu, L. S.; Hu, J. P.; Yang, J. K.; Xie, J. Rsc Adv. 2017, 7, 22567. doi: 10.1039/c7ra01946g

    98. [98]

      Xing, L. B.; Xi, K.; Li, Q.; Su, Z.; Lai, C.; Zhao, X.; Kumar, R. V. J. Power Sources 2016, 303, 22. doi: 10.1016/j.jpowsour.2015.10.097

    99. [99]

      Li, F.; Su, Y.; Zhao, J. J. Phys. Chem. Chem. Phys. 2016, 18, 25241. doi: 10.1039/c6cp04071c

    100. [100]

      Yu, M.; Yuan, W.; Li, C.; Hong, J. D.; Shi, G. J. Mater. Chem. A 2014, 2, 7360. doi: 10.1039/c4ta00234b

    101. [101]

      Xiao, Z.; Yang, Z.; Wang, L.; Nie, H.; Zhong, M. e.; Lai, Q.; Xu, X.; Zhang, L.; Huang, S. Adv. Mater. 2015, 27, 2891. doi: 10.1002/adma.201405637

    102. [102]

      Yu, M.; Wang, A.; Tian, F.; Song, H.; Wang, Y.; Li, C.; Hong, J. D.; Shi, G. Nanoscale 2015, 7, 5292. doi: 10.1039/c5nr00166h

    103. [103]

      Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. ACS Nano 2012, 6, 10759. doi: 10.1021/nn304037d

    104. [104]

      Ding, Y. L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Funct. Mater. 2016, 26, 1112. doi: 10.1002/adfm.201504294

    105. [105]

      Niu, S.; Lv, W.; Zhang, C.; Shi, Y.; Zhao, J.; Li, B.; Yang, Q. H.; Kang, F. J. Power Sources 2015, 295, 182. doi: 10.1016/j.jpowsour.2015.06.122

    106. [106]

      Zhu, L.; Peng, H. J.; Liang, J.; Huang, J. Q.; Chen, C. M.; Guo, X.; Zhu, W.; Li, P.; Zhang, Q. Nano Energy 2015, 11, 746. doi: 10.1016/j.nanoen.2014.11.062

    107. [107]

      Yuan, S.; Guo, Z.; Wang, L.; Hu, S.; Wang, Y.; Xia, Y. Adv. Sci. 2015, 2, 1500071. doi: 10.1002/advs.201500071

    108. [108]

      Zhou, X.; Xie, J.; Yang, J.; Zou, Y.; Tang, J.; Wang, S.; Ma, L.; Liao, Q. J. Power Sources 2013, 243, 993. doi: 10.1016/j.jpowsour.2013.05.050

    109. [109]

      Wang, B.; Wen, Y.; Ye, D.; Yu, H.; Sun, B.; Wang, G.; Hulicova-Jurcakova, D.; Wang, L. Chem. Eur. J. 2014, 20, 5224. doi: 10.1002/chem.201400385

    110. [110]

      Liu, S.; Xie, K.; Chen, Z.; Li, Y.; Hong, X.; Xu, J.; Zhou, L.; Yuan, J.; Zheng, C. J. Mater. Chem. A 2015, 3, 11395. doi: 10.1039/c5ta00897b

    111. [111]

      Yang, Y.; Risse, S.; Mei, S. L.; Jafta, C. J.; Lu, Y.; Stöcklein, C.; Kardjilov, N.; Manke, I.; Gong, L.; Kochovski, Z.; Ballauff, M. Energy Storage Materials 2017, 9, 96. doi: 10.1016/j.ensm.2017.06.008

    112. [112]

      Bao, W.; Zhang, Z.; Chen, W.; Zhou, C.; Lai, Y.; Li, J. Electrochim. Acta 2014, 127, 342. doi: 10.1016/j.electacta.2014.02.043

    113. [113]

      Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. ACS Nano 2014, 8, 5208. doi: 10.1021/nn501284q

    114. [114]

      Wu, F.; Lee, J. T.; Zhao, E.; Zhang, B.; Yushin, G. ACS Nano 2016, 10, 1333. doi: 10.1021/acsnano.5b06716

    115. [115]

      Li, Z.; Li, C.; Ge, X.; Ma, J.; Zhang, Z.; Li, Q.; Wang, C.; Yin, L. Nano Energy 2016, 23, 15. doi: 10.1016/j.nanoen.2016.02.049

  • 加载中
计量
  • PDF下载量:  42
  • 文章访问数:  1872
  • HTML全文浏览量:  731
文章相关
  • 发布日期:  2018-04-15
  • 收稿日期:  2017-07-24
  • 接受日期:  2017-08-22
  • 修回日期:  2017-08-21
  • 网络出版日期:  2017-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章