Citation: Cao Cheng, Qiu Manhong, You Xingmei, Lu Beibei, Ji Xiangdong. Syntheses of Tripodal Benzoyl Thiourea Ions Receptors and Their Recognition Properties[J]. Chemistry, ;2020, 83(3): 246-252. shu

Syntheses of Tripodal Benzoyl Thiourea Ions Receptors and Their Recognition Properties

  • Corresponding author: Ji Xiangdong, jxdsn@163.com
  • Received Date: 30 September 2019
    Accepted Date: 14 November 2019

Figures(10)

  • Two new tripodal receptors 1 and 2 containing benzoyl thiourea units were synthesized and characterized by conventional technical methods. Studies have shown that this type of receptor compound exhibits good UV-Vis recognition ability for F-, Ac- and CN-. Since the receptor compound 1 has a strong intramolecular charge transfer effect, it exhibits naked eye recognition performance for anions. UV titration indicated that this class of compounds had better binding ability to F- and CN-. Nuclear magnetic titration showed that the anion formed a host-guest complex through the intermolecular hydrogen bond with the host, and the proton detonation behavior occurred at the high concentration of F-. In addition, this class of subjects had a certain ability to selectively recognize Hg2+.
  • 加载中
    1. [1]

      Xu Y L, Li C T, Cao Q Y, et al. Dyes Pigm., 2017, 139:681~687. 

    2. [2]

      Brown A, Beer P D. Chem. Commun., 2016, 52(56):8645~8658. 

    3. [3]

      Gale P A, Caltagirone C. Chem. Soc. Rev., 2015, 44(13):4212~4227. 

    4. [4]

      Lin Q, Gong G F, Fan Y Q, et al. Chem. Commun., 2019, 55(22):3247~3250. 

    5. [5]

      Liu J, Fan Y Q, Song S S, et al. ACS Sustain. Chem. Eng. 2019, 7(14):11999~12007.

    6. [6]

      Lin Q, Fan Y Q, Mao P P, et al. Chem. Eur. J., 2018, 24(4):777~783. 

    7. [7]

      Lin Q, Lu T T, Zhu X, et al. Chem. Sci., 2016, 7(8):5341~5346. 

    8. [8]

      Lin Q, Zhong K P, Zhu J H, et al. Macromolecules, 2017, 50(20):7863~7871. 

    9. [9]

      Mehdi H, Pang H C, Gong W T, et al. Org. Biomol. Chem., 2016, 14:5956~5964. 

    10. [10]

      Tsai C C, Chuang W T, Tsai Y F, et al. J. Mater. Chem. B., 2013, 1:819~827. 

    11. [11]

      Qiu B, Xia B, Zhou Q, et al. Cell Res., 2018, 28:644~654. 

    12. [12]

      Xu Z, Chen X, Kim H N, et al. Chem. Soc. Rev., 2010, 39(1):127~137. 

    13. [13]

      Way J L. Annu. Rev. Pharmacol. Toxicol., 1984, 24:451~481. 

    14. [14]

       

    15. [15]

       

    16. [16]

      Shi G, Gadhe C G, Park S W, et al. Org. Lett., 2014, 16:334~337. 

    17. [17]

      Jo J, Putikam R, Lin M C et al. Tetrahed. Lett., 2016, 57:3208~3214. 

    18. [18]

      Valeria A, Luigi F, Lorenzo M. Chem. Soc. Rev., 2010, 39(10):3889~3915. 

    19. [19]

      Jia C D, Zuo W, Zhang D, et al. Chem. Commun., 2016, 52(62):9614~9627. 

    20. [20]

      Huang C, Yi R, Chen D M, et al. Chin. J. Struct. Chem., 2019, 38(5):737~744.

    21. [21]

      Pál D, Móczár I, Kormos A, et al. Tetrahedron:Asymmetry, 2016, 27(19):918~922. 

    22. [22]

       

    23. [23]

       

    24. [24]

       

    25. [25]

      Tarafdar D, Saha I, Ghosh K. Tetrahed. Lett., 2017, 58(21):2038~2043. 

    26. [26]

      Jennings A R, Son D Y. Tetrahedron, 2015, 71(23):3990~3999. 

    27. [27]

      Park Y S, Bang S H, Choi H J. Tetrahed. Lett., 2013, 54(49):6708~6711. 

    28. [28]

      Udhayakumaria D, Velmathia S, Boobalan M S, et al. J. Fluorine Chem., 2008, 129:131~136. 

    29. [29]

      Guha S, Saha S. J. Am. Chem. Soc., 2010, 132(50):17674~17677. 

    30. [30]

      Sohn D H, Park J, Cho S J, et al. Tetrahedron, 2017, 73(2):212~221. 

    31. [31]

      Benesi H A, Hildebrand J H. J. Am. Chem. Soc., 1949, 71:2703~2707 

    32. [32]

      Miller J, Miller J C, Statistics and Chemometrics for Analytical CHEMISTRY, 6th ed. Melih Bayar, 2014.

    33. [33]

      Zullkiplee W S H W, Ngaini Z, Ariff M A M, et al. Phosphorus, Sulfur Silicon Relat. Elem., 2016, 191(10):1329~1333. 

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    7. [7]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    11. [11]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    12. [12]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    20. [20]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

Metrics
  • PDF Downloads(4)
  • Abstract views(2314)
  • HTML views(284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return