Citation: CHEN Jia-min, ZHOU Chang-song, YANG Hong-min, WU Hao. A DFT study on the adsorption of various mercury species in the coal combustion flue gases on the Mo-doped Fe3O4(111) surface[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 525-532. shu

A DFT study on the adsorption of various mercury species in the coal combustion flue gases on the Mo-doped Fe3O4(111) surface

  • Corresponding author: ZHOU Chang-song, cszhou@njnu.edu.cn
  • Received Date: 19 January 2020
    Revised Date: 16 March 2020

    Fund Project: the National Natural Science Foundation of China 51806107the Natural Science Foundation of Jiangsu Province BK20180731the National Natural Science Foundation of China 51676101The project was supported by the National Natural Science Foundation of China (51676101, 51806107) and the Natural Science Foundation of Jiangsu Province(BK20161558, BK20180731)the Natural Science Foundation of Jiangsu Province BK20161558

Figures(6)

  • The adsorption characteristics of Hg0, HgCl and HgCl2 on the Mo-doped Fe3O4 (111) Fetet surface were investigated by density functional theory (DFT) calculation with the CASTEP software package. The results indicate that both HgCl and HgCl2 are chemically adsorbed on the Mo-doped Fe3O4 (111) Fetet surface, whereas Hg0 is bound to the surface by physisorption. The binding energies of HgCl on the Mo-doped Fe3O4 (111) Fetet surface is about 40%-66% higher than that on the pure Fe3O4 (111) Fetet surface. For the adsorption of HgCl2 molecule on the pure Fe3O4 (111) Fetet surface, two Cl atoms interact with one Mo atom and one Fe atom, forming the "M" structure; in contrast, on the Mo-doped Fe3O4 (111) Fetet surface, the stronger interaction between Cl atom and Mo atom allows a complete dissociation of HgCl2 and release of Hg. The adsorption mechanism of mercury species on the Mo-doped Fe3O4 (111) Fetet surface revealed in this work may be helpful for the practical removal of mercury from coal-fired flue gases.
  • 加载中
    1. [1]

      Statistical Yearbook of China[M]. Beijing: China Statistics Press, 2009

    2. [2]

      ZHENG Y, JENSEN A D, WINDELIN C, JENSEN F. Review of technologies for mercury removal from flue gas from cement production processes[J]. Prog Energy Combust, 2012,38(5):599-629. doi: 10.1016/j.pecs.2012.05.001

    3. [3]

      CARPI A. Mercury from combustion sources:A review of the chemical species emitted and their transport in the atmosphere[J]. Water Air Soil Poll, 1997,98(3/4):241-254. doi: 10.1023/A:1026429911010

    4. [4]

      YANG Y, LIU J, WANG Z, ZHANG Z. Homogeneous and heterogeneous reaction mechanisms and kinetics of mercury oxidation in coal-fired flue gas with bromine addition[J]. Proc Combust Inst, 2016,36(3):4039-4049. doi: 10.1016/j.proci.2016.08.068

    5. [5]

      ZHANG B K, LIU J, ZHENG C G, CHANG M. Theoretical study of mercury species adsorption mechanism on MnO2(110) surface[J]. Chem Eng J, 2014,256:93-100. doi: 10.1016/j.cej.2014.07.008

    6. [6]

      GALBREATH K C, ZYGARLICKE C J. Mercury speciation in coal combustion andgasfication flue gases[J]. Environ Sci Technol, 1996,30(8):2421-2426. doi: 10.1021/es950935t

    7. [7]

      WHO (World Health Organization). Preventing Disease through Healthy Environment: Exposure to Mercury: A Major Public Health Concern[R]. Geneva, Switzerland, WHO, 2007.https://www.who.int/ipcs/features/mercury.pdf

    8. [8]

      SJOSTROM S, DURHAM M, BUSTARD C J, MARTIN C. Activated carbon injection for mercury control:overview[J]. Fuel, 2010,89(6):1320-1322. doi: 10.1016/j.fuel.2009.11.016

    9. [9]

      YANG H, XU Z, FAN M, BLAND A E, JUDKINS R R. Adsorbents for capturing mercury in coal-fired boiler flue gas[J]. J Hazard Mater, 2017,146(1/2):1-11.  

    10. [10]

      WANG P, HU S, XIANG J, SU S, SUN L, CAO F, XIAO X, ZHANG A. Analysis of mercury species over CuO-MnO2-Fe2O3/γ-Al2O3 catalysts by thermal desorption[J]. Proc Combust Inst, 2015,35(3):2847-2853. doi: 10.1016/j.proci.2014.06.054

    11. [11]

      ZHANG A, ZHENG W, SONG J, HU S, LIU Z, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014,236:29-38. doi: 10.1016/j.cej.2013.09.060

    12. [12]

      ZHOU C S, SUN L S, XIANG J, HU S, SU S, ZHAO A C. The experimental and mechanism study of novel heterogeneous Fenton-like reactions using Fe3-xTixO4 catalysts for Hg0 absorption[J]. Proc Combust Inst, 2015,35(3):2875-2882. doi: 10.1016/j.proci.2014.06.049

    13. [13]

      ZHOU C S, SUN L S, ZHANG A C, WU X F, MA C, SU S, HU S, XIANG J. Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts towards elemental mercury removal[J]. Chemosphere, 2015,125:16-24. doi: 10.1016/j.chemosphere.2014.12.082

    14. [14]

      LI H L, FENG S H, YANG Z Q, YANG J P, LIU S J, HU Y C, ZHONG L, QU W Q. Density functional theory study of mercury adsorption on CuS surface:Effect of typical flue gas components[J]. Energy Fuels, 2019,33(2):1540-1546. doi: 10.1021/acs.energyfuels.8b03585

    15. [15]

      ZHAO H T, MU X L, YANG G, GEORGE M. Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants[J]. Appl Energy, 2017,207:254-264. doi: 10.1016/j.apenergy.2017.05.172

    16. [16]

      WANG Z, LIU J, YANG Y J, LIU F, DING J Y. Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO2 catalyst[J]. Proc Combust Inst, 2019,37(3):2967-2975. doi: 10.1016/j.proci.2018.06.132

    17. [17]

      YANG Tao, WEN Xiao-dong, REN Jun, LI Yong-wang, WANG Jian-guo, HUO Chun-fang. Surface structures of Fe304(111), (110), and (001):A density functional theory study[J]. J Fuel Chem Technol, 2010,38(1):121-128. doi: 10.3969/j.issn.0253-2409.2010.01.022 

    18. [18]

      YANG T, WEN X D, HUO C F, LI Y W, WANG J G, JIAO H J. Structure and energetics of hydrogen adsorption on Fe3O4(111)[J]. J Mol Catal A Chem, 2009,302(1):129-136.  

    19. [19]

      YU X H, HUO C F, LI Y W, WANG J G, JIAO H J. Fe3O4 surface electronic structures and stability from GGA+U[J]. Surf Sci, 2012,606(9/10):872-879.  

    20. [20]

      ZHAO Zhong-xia, REN Ren, REN Yi-jing, ZHOU Zhi-li. Theoretical study of the magnetic and electric properties of transition elements doped Fe3O4(001) surface[J]. Chin J Inorg Chem, 2017,33(6):923-931.  

    21. [21]

      FU Z M, YANG B W, ZHANG Y, ZHANG N, YANG Z X. Dopant segregation and CO adsorption on doped Fe3O4(111) surfaces:A first principle study[J]. J Catal, 2108,364:291-296. doi: 10.1016/j.jcat.2018.05.027

    22. [22]

      FU Z M, WANG J Q, ZHANG N, AN Y P, YANG Z X. Effect of Cu doping on the catalytic activity of Fe3O4 in water-gas shift reactions[J]. Int J Hydrogen Energy, 2015,40(5):2193-2198. doi: 10.1016/j.ijhydene.2014.12.063

    23. [23]

      XUE P Y, FU Z M, YANG Z X. The density functional theory studies on the promoting effect of the Cu-modified Fe3O4 catalysts[J]. Phys Lett A, 2015,379(6):607-612. doi: 10.1016/j.physleta.2014.12.014

    24. [24]

      SONG Z J, WANG B, YU J, MA C, CHEN T, YANG W, LIU S, SUN L S. Effect of Ti doping on heterogeneous oxidation of NO over Fe3O4 (111) surface by H2O2:A density functional study[J]. Chem Eng J, 2018,354:517-524. doi: 10.1016/j.cej.2018.08.042

    25. [25]

      MENG Jing. The first-principles study on the based Fe3O4 of half-metallic properties[D]. Heibei: Yanshan Universuty, 2011. 

    26. [26]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996,77:3865-3868. doi: 10.1103/PhysRevLett.77.3865

    27. [27]

      WHITE J A, BIRD D M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations[J]. Phys Rev B, 1994,50(7):4954-4957. doi: 10.1103/PhysRevB.50.4954

    28. [28]

      ZHOU Chang-song, YANG Hong-min, SUN Jia-xing, QI Dong-xu, MAO Lin, SONG Zi-jian, SUN Lu-shi. Mechanism of Hg removal by gaseous advanced oxidation process with Fe3O4 and H2O2[J]. J Chem Ind Eng (China), 2018,69(5):1840-1845.  

    29. [29]

      XU Z M, LV X J, CHEN J A, JIANG L X, LAI Y Q, LI J. First principles study of adsorption and oxidation mechanism of elemental mercury by HCl over MoS2(100) surface[J]. Chem Eng J, 2017,308:1225-1232. doi: 10.1016/j.cej.2016.10.059

    30. [30]

      GUO P, GUO X, ZHENG C G. Computational insights into interactions between Hg species and α-Fe2O3 (001)[J]. Fuel, 2011,90(5):1840-1846. doi: 10.1016/j.fuel.2010.11.007

    31. [31]

      HUANG D M, CAO D B, LI Y W, JIAO H J. Density function theory study of CO adsorption on Fe3O4(111) surface[J]. J Phys Chem B, 2006,110(28):13920-13295. doi: 10.1021/jp0568273

    32. [32]

      KAUPP M, VON SCHNERING H G. Origin of the unique stability of condensed-phase Hg22+. An ab initio investigation of MI and MII species (M=Zn, Cd, Hg)[J]. Inorg Chem, 1994,33(18):4179-4185. doi: 10.1021/ic00096a049

    33. [33]

      HU A, OTTO P, LADIK J. Relativistic all-electron molecular Hartree-Fock-Dirac-(Gaunt) calculations on HgO[J]. J Mol Struct, 1999,468(3):163-169. doi: 10.1016/S0166-1280(98)00508-9

    34. [34]

      YANG Y, LIU J, ZHANG B, LIU F. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4[J]. J Hazard Mater, 2017,321:154-161. doi: 10.1016/j.jhazmat.2016.09.007

    35. [35]

      SU T, QIN Z, HUANG G, JI H, JIANG Y, CHEN J. Density functional theory study on the interaction of CO2 with Fe3O4(111) surface[J]. Appl Surf Sci, 2016,378(15):270-276.  

    36. [36]

      ZHANG B, LIU J, YANG Y, CHANG M. Oxidation mechanism of elemental mercury by HCl over MnO2 catalyst:Insights from first principles[J]. Chem Eng J, 2015,280:354-362. doi: 10.1016/j.cej.2015.06.056

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    19. [19]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    20. [20]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

Metrics
  • PDF Downloads(11)
  • Abstract views(550)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return