Citation: Zhao Xuyang, Zhu Jinwei, Feng Jiangtao, Yan Wei. Synthesis and Adsorption Properties of Special Micro-Morphological Polypyrrole[J]. Chemistry, ;2019, 82(8): 675-683. shu

Synthesis and Adsorption Properties of Special Micro-Morphological Polypyrrole

  • Corresponding author: Feng Jiangtao, fjtes@xjtu.edu.cn
  • Received Date: 17 February 2019
    Accepted Date: 3 June 2019

Figures(13)

  • In this paper, the synthesis method of special micro-morphological PPy and its composites such as PPy/metal element, PPy/metal oxide, PPy/dyes and PPy/non-metal elements are summarized, and the differences in the morphology of PPy and its composites are analyzed. It was concluded that difference in micromorphology can affect the material properties. Current report on the application of PPy composites in the field of adsorption are briefly introduced, and the effects of different micro-morphologies on the adsorption properties are discussed. The excellent adsorption performance of PPy composites for dyes and heavy metals are also analyzed. The great application prospect and commercial value of PPy and its composites with special micromorphology in the field of adsorption is pointed out.
  • 加载中
    1. [1]

      M M Hasani-Sadrabadi, N Mokarram, M Azami et al. Polymer, 2011, 52(1):1286~1296. 

    2. [2]

      T Hery, V B Sundaresan. Energy Environ. Sci., 2016, 9(8):2555~2562. 

    3. [3]

      J Sun, Y Huang, C Fu et al. Nano Energy, 2016, 27:230~237. 

    4. [4]

      E Stochmal, M Hasik, W Turek et al. Polym. Adv. Technol., 2011, 22(6):1067~1077. 

    5. [5]

      D Luo, F Lin, W Xiao et al. J. Chin. Chem. Soc.-TAIP, 2016, 63(11):902~908. 

    6. [6]

      J Ma, Q Xu, J Zhou et al. Colloid. Surf. B, 2013, 111:257~263. 

    7. [7]

      S K Srivastava, S Senapati, S B Singh et al. RSC Adv., 2016, 6(114):113424~113431. 

    8. [8]

      T Prasankumar, S Karazhanov, S P Jose. Mater. Lett., 2018, 221:179~182. 

    9. [9]

      P Bober, Y Li, U Acharya et al. Synth. Met., 2018, 237:40~49. 

    10. [10]

      J Feng, W Yan, L Zhang. Microchim. Acta, 2009, 166(3):261~267. 

    11. [11]

      Y Zou, J Qin, Z Huang et al. ACS Appl. Mater. Interf., 2016, 8(20):12576~12582. 

    12. [12]

      G Ren, X Lu, Y Li et al. ACS Appl. Mater. Interf., 2016, 8(6):4118~4125. 

    13. [13]

      X Zhang, R Bai, Y W Tong. Sep. Purif. Technol., 2006, 52(1):161~169. 

    14. [14]

      Y Zhan, X Wan, S He et al. J. Chem. Technol. Biotechnol., 2018, 93(5):1432~1442. 

    15. [15]

      Q Liu, B Wang, J Chen et al. Composites A:Appl. Sci. Manufact., 2017, 101:30~40. 

    16. [16]

      K He, C Qin, Q Wen et al. J. Appl. Polym. Sci., 2018, 135(21):6289. 

    17. [17]

      X Li, D Fang, Y Cao et al. J. Mater. Sci., 2016, 51(20):9526~9533. 

    18. [18]

      M Ikegame, K Tajima, T Aida. Angew. Chem. Int. Ed., 2003, 42(19):2154~2157. 

    19. [19]

      L Liu, Y Hou, J Wang et al. Adv. Mater. Interf., 2016, 3(13):1600030. 

    20. [20]

      L Zhan, H Chen, J Fang et al. Electrochim. Acta, 2016, 209:192~200. 

    21. [21]

      Y Jiang, G Nie, M Chi et al. RSC Adv., 2016, 6(37):31107~31113. 

    22. [22]

      Y Yuan, J Zhou, M I Rafiq et al. Electrochim. Acta, 2019, 295:82~91. 

    23. [23]

      J Kopecká, D Kopecký, M Vrňata et al. RSC Adv., 2014, 4(4):1551~1558. 

    24. [24]

      J Hazarika, A Kumar. J. Polym. Res., 2016, 23(5):95. 

    25. [25]

      H Bagheri, O Rezvani, S Banihashemi. J. Chromatogr. A, 2016, 1434:19~28. 

    26. [26]

      Z Cao, H Yang, P Dou et al. Electrochim. Acta, 2016, 209:700~708. 

    27. [27]

      J Zhang, Y Shi, Y Ding et al. Nano Lett., 2016, 16(11):7276~7281. 

    28. [28]

      R Jin, Q Wang, H Li et al. Appl. Surf. Sci., 2017, 403:62~70. 

    29. [29]

      Y Chen, W Ma, K Cai et al. Electrochim. Acta, 2017, 246:615~624. 

    30. [30]

      E G Pineda, M J R Presa, C A Gervasi et al. J. Electroanal. Chem., 2018, 812:28~36. 

    31. [31]

      H Du, Y Xie, C Xia et al. New J. Chem., 2014, 38(3):1284~1293. 

    32. [32]

      J Zhang, X Liu, L Zhang et al. Macromol. Rapid Commun., 2013, 34(6):528~532. 

    33. [33]

      W Wei, P Du, D Liu et al. Nanoscale, 2018, 10(27):13037~13044. 

    34. [34]

      K Qi, R Hou, S Zaman et al. J. Mater. Chem. A, 2018, 6(9):3913~3918. 

    35. [35]

      S Li, B Jin, H Li et al. J. Electroanal. Chem., 2017, 806:41~49. 

    36. [36]

      P Bober, J Stejskal, I Šeděnková et al. Appl. Surf. Sci., 2015, 356:737~741. 

    37. [37]

      S Mosivand, I Kazeminezhad. J. Mater. Sci:Mater. Electron., 2018, 29(14):12466~12476. 

    38. [38]

      B K Shrestha, R Ahmad, S Shrestha et al. Sci. Rep., 2017, 7(1):16191. 

    39. [39]

      V Babayan, N E Kazantseva, R Moučka et al. Cellulose, 2017, 24(8):3445~3451. 

    40. [40]

      Y Lee, H Choi, M S Kim et al. Sci. Rep., 2016, 6:19761. 

    41. [41]

      C Sasso, N Bruyant, D Beneventi et al. Cellulose, 2011, 18(6):1455~1467. 

    42. [42]

      F H Du, B Li, W Fu et al. Adv. Mater., 2014, 26(35):6145~6150. 

    43. [43]

      L Bai, Z Li, Y Zhang et al. Chem. Eng. J., 2015, 279:757~766. 

    44. [44]

      J M Kim, Y S Huh, H J Kim et al. Chem. Eng. J., 2014, 237:380~386. 

    45. [45]

      G Li, R Han, X Xu et al. RSC Adv., 2016, 6(53):48199~48204. 

    46. [46]

      X Ning, W Zhong, S Li et al. Mater. Lett., 2014, 117:294~297. 

    47. [47]

      D Su, J Zhang, S Dou et al. Chem. Commun., 2015, 51(89):16092~16095. 

    48. [48]

      A E Abelow, K M Persson, E W H Jager et al. Macromol. Mater. Eng., 2014, 299(2):190~197. 

    49. [49]

      A Aygun, J W Buthker, L D Stephenson et al. J. Electroanal. Chem., 2012, 684:47~52. 

    50. [50]

      S Pirsa, N Alizadeh. IEEE Sens. J., 2011, 11(12):3400~3405. 

    51. [51]

      F Hui, B Li, P He et al. Electrochem. Commun., 2009, 11(3):639~642. 

    52. [52]

      E Asghari, H Ashassi-Sorkhabi, A Vahed et al. Thin Solid Films, 2016, 598:6~15. 

    53. [53]

      T Purkait, G Singh, N Kamboj et al. J. Mater. Chem. A, 2018, 6(45):22858~22869. 

    54. [54]

       

    55. [55]

      Y Wang, Y Zhang, W Zhong et al. J. Mater. Sci., 2018, 53:8409~8419. 

    56. [56]

      H Khan, K Malook, M Shah. J. Mater. Sci-Mater. El., 2018, 29(11):9090~9098. 

    57. [57]

      Q G Shao, W M Chen, Z H Wang et al. Electrochem. Commun., 2011, 13(12):1431~1434. 

    58. [58]

      J Wang, C Luo, G Qi et al. Appl. Surf. Sci., 2014, 316:245~250. 

    59. [59]

       

    60. [60]

      J J Wu, H W Lee, J H You et al. J. Colloid. Interf. Sci., 2014, 420:145~151. 

    61. [61]

      J Feng, J Li, W Lv et al. Synth. Met., 2014, 191:66~73. 

    62. [62]

      S Li, X Lu, X Li et al. J. Colloid Interf. Sci., 2012, 378(1):30~35. 

    63. [63]

       

    64. [64]

      H Wang, X Liu, X Liu et al. Desalin. Water Treat., 2015, 54(12):3291~3299. 

    65. [65]

      S Xin, N Yang, F Gao et al. Appl. Surf. Sci., 2017, 414:218~223. 

    66. [66]

       

    67. [67]

      M Maruthapandi, V B Kumar, J H T Luong et al. ACS Omega, 2018, 3(7):7196~7203. 

    68. [68]

      T Mahlangu, R Das, L K Abia et al. Chem. Eng. J., 2019, 360:423~434. 

    69. [69]

      V D Thao, B L Giang, T V Thu. RSC Adv., 2019, 9(10):5445~5452. 

    70. [70]

      N F Attia, S M Lee, H J Kim et al. Int. J. Energy Res., 2014, 38(4):466~476. 

    71. [71]

      X Sun, X Lv, M Sui et al. Materials, 2018, 11(5):1~12.

    72. [72]

      H Yuan, B Jin, L Y Meng. Carbon Lett., 2018, 28(1):116~120.

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    11. [11]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    16. [16]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(42)
  • Abstract views(2523)
  • HTML views(646)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return