Citation: JING Zhong-yu, ZHANG Tao-qi, SHANG Jiang-wei, ZHAI Ming-lu, YANG Hao, QIAO Cong-zhen, MA Xin-qi. Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to fuel-like hydrocarbons[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 427-440. shu

Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to fuel-like hydrocarbons

  • Corresponding author: QIAO Cong-zhen, qiaocongzhen@henu.edu.cn
  • Received Date: 18 January 2018
    Revised Date: 28 February 2018

    Fund Project: Science and Technology Development Project of Henan Province 152102210258National Science and Technology Supporting Program 2013BAB11B02The project was supported by National Science and Technology Supporting Program (2013BAB11B02) and Science and Technology Development Project of Henan Province (152102210258)

Figures(15)

  • In this work, series of Ni/γ-Al2O3 catalysts with or without Cu and Mo components were prepared, characterized and tested for the hydrodeoxygenation of fatty acid methyl esters (FAME) to hydrocarbons. The effects of Cu and Mo loading, impregnation sequence with sequential impregnation and co-impregnation involved and reaction conditions on catalytic performance were investigated. According to the TG data, the spent 20Ni-6Cu/γ-Al2O3 catalyst gives less weight loss than the spent 20Ni/γ-Al2O3 catalyst, which indicates that the addition of copper inhibits the carbon deposits behavior on catalyst surface during reaction. For 20Ni-6Cu/γ-Al2O3 and 20Ni-6Cu-nMo/γ-Al2O3(n=2, 5, 8 and 12) catalysts, NH3-TPD analysis shows that the addition of molybdenum phase has significant impact on the acid sites of γ-Al2O3. When the loading of molybdenum is 5%, a new acid site is observed corresponding to the medium strength acid site. The Cu and Mo modified catalysts demonstrate better catalytic performance than Ni/γ-Al2O3 catalysts. Based on XPS results, Cu in the catalysts exists in the Cu2+ and Mo in the catalysts has two states:Mo4+ and Mo6+, and different impregnation sequences may influence the actual element composition of active phase on the surface of catalysts. In addition, the conversion of FAME and yield of alkane are related to the catalysts prepared with different impregnation sequence. Among all the catalysts, the trimetallic 20Ni-6Cu-5Mo/γ-Al2O3 prepared by sequential impregnation (the former Ni and Cu impregnation, the latter Mo impregnation) exhibits optimal catalytic performance. Under appropriate reaction conditions 350℃, 2.5 MPa, WSHV=2.0 h-1, H2/oil ratio=1250 mL/mL, the conversion of FAME and yield of alkane are 98.4% and 94.2%.
  • 加载中
    1. [1]

      KUMAR R, FAROOQUI S A, ANAND M, KUMAR R, JOSHI R, KHAN A, SINHA A K. Hydrotreatment of jatropha oil over NiMoS catalyst supported on thermostable mesoporous silica doped titania for the production of renewable drop-in diesel[J]. Catal Commun, 2017,98:102-106. doi: 10.1016/j.catcom.2017.04.047

    2. [2]

      ZHANG Z N, TANG M X, CHEN J X. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons[J]. Appl Surf Sci, 2016,360(4):353-364.  

    3. [3]

      LOE R, SANTILLAN-JIMENEZ E, MORGAN T, SEWELL L, JI Y, JONES S, ISAACS M A, LEE A F, CROCKER M. Effect of Cu and Sn promotion on the catalytic deoxygenation of model and algal lipids to fuel-like hydrocarbons over supported Ni catalysts[J]. Appl Catal B:Environ, 2016,191:147-156. doi: 10.1016/j.apcatb.2016.03.025

    4. [4]

      ROH H S, EUM I H, JEONG D W, YI B E, NA J G, KO C H. The effect of calcination temperature on the performance of Ni/MgO-Al2O3 catalysts for decarboxylation of oleic acid[J]. Catal Today, 2011,164(1):457-460. doi: 10.1016/j.cattod.2010.10.048

    5. [5]

      LIU Q Y, ZUO H L, WANG T J, MA L L, ZHANG Q. One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts[J]. Appl Catal A:Gen, 2013,468(12):68-74.  

    6. [6]

      XIN H, GUO K, LI D, YANG H Q, HU C W. Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts[J]. Appl Catal B:Environ, 2016,187:375-385. doi: 10.1016/j.apcatb.2016.01.051

    7. [7]

      KUKUSHKIN R G, BULAVCHENKO O A, KAICHEV V V, YAKOVLEV V A. Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters[J]. Appl Catal B:Environ, 2015,163:531-538. doi: 10.1016/j.apcatb.2014.08.001

    8. [8]

      ZHAO S, ZHANG Z N, ZHU K Y, CHEN J X. Hydroconversion of methyl laurate on bifunctional Ni2P/AlMCM-41 catalyst prepared via in situ phosphorization using triphenylphosphine[J]. Appl Surf Sci, 2017,404:388-397. doi: 10.1016/j.apsusc.2017.02.016

    9. [9]

      CHEN N, GONG S F, QIAN E W. Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate[J]. Appl Catal B:Environ, 2015,174/175:253-263. doi: 10.1016/j.apcatb.2015.03.011

    10. [10]

      SHI H, CHEN J X, YANG Y, TIAN S S. Catalytic deoxygenation of methyl laurate as a model compound to hydrocarbons on nickel phosphide catalysts:Remarkable support effect[J]. Fuel Process Technol, 2014,118(1):161-170.  

    11. [11]

      CHEN J X, YANG Y, SHI H, LI M F, CHU Y, PAN Z Y, YU X B. Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides:Effect of Ni/Mo ratio[J]. Fuel, 2014,129(7):1-10.  

    12. [12]

      JENIŠTOVÁ K, HACHEMI I, MÄKI-ARVELA P, KUMAR N, PEURLA M, ČAPEK L, WÄRNÅ J, MURZIN D Y. Hydrodeoxygenation of stearic acid and tall oil fatty acids over Ni-alumina catalysts:Influence of reaction parameters and kinetic modelling[J]. Chem Eng J, 2017,316:401-409. doi: 10.1016/j.cej.2017.01.117

    13. [13]

      ZUO H L, LIU Q Y, WANG T J, MA L L, ZHANG Q, ZHANG Q. Hydrodeoxygenation of methyl palmitate over supported Ni catalysts for diesel-like fuel production[J]. Energy Fuels, 2012,26(6):3747-3755. doi: 10.1021/ef300063b

    14. [14]

      KORDULIS C, BOURIKAS K, GOUSI M, KORDOULI E, LYCOURGHIOTIS A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel:A critical review[J]. Appl Catal B:Environ, 2016,181:156-196. doi: 10.1016/j.apcatb.2015.07.042

    15. [15]

      GALEA N M, KNAPP D, ZIEGLER T. Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells:Suggestions for coke reduction[J]. J Catal, 2007,247(1):20-33. doi: 10.1016/j.jcat.2006.12.021

    16. [16]

      FIERRO V, AKDIM O, MIRODATOS C. On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts[J]. Green Chem, 2003,5(1):20-24. doi: 10.1039/b208201m

    17. [17]

      BOUDJAHEM A G, CHETTIBI M, MONTEVERDI S, BETTAHAR M M. Acetylene hydrogenation over Ni-Cu nanoparticles supported on silica prepared by aqueous hydrazine reduction[J]. J Nanosci Nanotechnol, 2009,9(6):3546-3554. doi: 10.1166/jnn.2009.NS28

    18. [18]

      GUO Q, WU M, WANG K, ZHANG L, XU X. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2, catalysts[J]. Ind Eng Chem Res, 2015,54(3):890-899. doi: 10.1021/ie5042935

    19. [19]

      ARDIYANTI A R, KHROMOVA S A, VENDERBOSCH R H, YAKOVLEV V A, MELIÁN-CABRERA I V, HEERES H J. Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports[J]. Appl Catal A:Gen, 2012,449:121-130. doi: 10.1016/j.apcata.2012.09.016

    20. [20]

      MICHIO A, HARUO T, KIYOSHI O, KUNIO S, TADASUKE H, NAOYUKI T. Thermally stable nickel-molybdenum alloy catalysts supported on magnesium aluminate for high temperature methanation[J]. Sekiyu Gakkaishi, 2008,24(6):363-370.  

    21. [21]

      KADINOV G, PRALIAUD H, PRIMET M, MARTIN G A. Morphological, electronic and catalytic properties of silica-supported nickel and nickel-molybdenum catalysts[J]. Appl Catal, 1984,10(1):63-76. doi: 10.1016/0166-9834(84)85006-X

    22. [22]

      AGUADO J, ESCOLA J M, CASTRO M C. Influence of the thermal treatment upon the textural properties of sol-gel mesoporousγ-alumina synthesized with cationic surfactants[J]. Microporous Mesoporous Mater, 2010,128(1/3):48-55.  

    23. [23]

      LIU J, LIU C, ZHOU G, SHEN S T, RONG L. Hydrotreatment of Jatropha oil over NiMoLa/Al2O3 catalyst[J]. Green Chem, 2012,14(9):2499-2505. doi: 10.1039/c2gc35450k

    24. [24]

      THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem, 2011,38(1):25-25.  

    25. [25]

      LIU C Y, YANG H, JING Z Y, XI K Z, QIAO C Z. Hydrodeoxygenation of fatty acid methyl esters and isomerization of products over NiP/SAPO-11 catalysts[J]. Fuel Chem Technol, 2016,44(10):1211-1216. doi: 10.1016/S1872-5813(16)30052-4

    26. [26]

      LIU Q Y, ZUO H L, ZHANG Q, WANG T J, MA L L. Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts[J]. Chin J Catal, 2014,35(5):748-756. doi: 10.1016/S1872-2067(12)60710-4

    27. [27]

      TIAN S S, CHEN J X. Hydroisomerization of n-dodecane on a new kind of bifunctional catalyst:Nickel phosphide supported on SAPO-11 molecular sieve[J]. Fuel Process Technol, 2014,122(122):120-128.  

    28. [28]

      ASSAF P G M, NOGUEIRA F G E, ASSAF E M. Ni and Co catalysts supported on alumina applied to steam reforming of acetic acid:Representative compound for the aqueous phase of bio-oil derived from biomass[J]. Catal Today, 2013,213(37):2-8.  

    29. [29]

      BERTEAU P, DELMON B. Modified aluminas:Relationship between activity in 1-butanol dehydration and acidity measured by NH3-TPD[J]. Catal Today, 1989,5(2):121-137. doi: 10.1016/0920-5861(89)80020-3

    30. [30]

      ZHAO S, LI M F, CHU Y, CHEN J X. Hydroconversion of methyl laurate as a model compound to hydrocarbons on bifunctional Ni2P/SAPO-11:Simultaneous comparison with the performance of Ni/SAPO-11[J]. Energy Fuels, 2014,28(11):7122-7132. doi: 10.1021/ef501723p

    31. [31]

      XIA Z J, LIU H Y, LU H F, ZHANG Z K, CHEN Y F. Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation[J]. Appl Surf Sci, 2017,422:905-912. doi: 10.1016/j.apsusc.2017.04.245

    32. [32]

      KHROMOVA S A, SMIRNOV A A, BULAVCHENKO O A, SARAEV A A, KAICHEV V V, Reshetnikov S I, YAKOVLEV V A. Anisole hydrodeoxygenation over Ni-Cu bimetallic catalysts:The effect of Ni/Cu ratio on selectivity[J]. Appl Catal A:Gen, 2014,470(2):261-270.  

    33. [33]

      KOCHETKOVA D, BLAŽEK J, ŠIMÁČEK P, STAŠ M, BEŇO Z. Influence of rapeseed oil hydrotreating on hydrogenation activity of CoMo catalyst[J]. Fuel Process Technol, 2016,142:319-325. doi: 10.1016/j.fuproc.2015.10.034

    34. [34]

      BOTAS J A, SERRANO D P, GARCÍA A, VICENTE J D, RAMOSA R. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catal Today, 2012,195(1):59-70. doi: 10.1016/j.cattod.2012.04.061

    35. [35]

      TOBAA M, ABEA Y, KURAMOCHI H, OSAKO M, MOCHIZUKI T, YOSHIMURAA Y J. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts[J]. Catal Today, 2011,164(1):533-537. doi: 10.1016/j.cattod.2010.11.049

    36. [36]

      VERMA D, RANA B S, KUMAR R, SIBI M G, SINHA A K. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11[J]. Appl Catal A:Gen, 2015,490:108-116. doi: 10.1016/j.apcata.2014.11.007

    37. [37]

      PERONI M, MANCINO G, BARÁTHA E, GUTIÉRREZ O Y, LERCHER J A. Bulk andγAl2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid[J]. Appl Catal B:Environ, 2016,180:301-311. doi: 10.1016/j.apcatb.2015.06.042

    38. [38]

      WANG H Y, JIAO T T, LI Z X, LI C S, ZHANG S J, ZHANG J L. Study on palm oil hydrogenation for clean fuel over Ni-Mo-W/γ-Al2O3-ZSM-5 catalyst[J]. Fuel Process Technol, 2015,139:91-99. doi: 10.1016/j.fuproc.2015.08.004

  • 加载中
    1. [1]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    7. [7]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    8. [8]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    11. [11]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    12. [12]

      Yanyu JinWenzhe SiXing YuanHongjun ChengBin ZhouLi CaiYu WangQibao WangJunhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    15. [15]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    16. [16]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    17. [17]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    18. [18]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(9)
  • Abstract views(560)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return