Citation: ZHANG Xiu-xia, LÜ Xiao-xue, XIAO Mei-hua, LIN Ri-yi, ZHOU Zhi-jun. Molecular reaction dynamics simulation of pyrolysis mechanism of typical bituminous coal via ReaxFF[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1035-1046. shu

Molecular reaction dynamics simulation of pyrolysis mechanism of typical bituminous coal via ReaxFF

  • Received Date: 3 July 2020
    Revised Date: 10 August 2020

    Fund Project: The project was supported by the Fundamental Research Funds for the Central Universities (18CX02073A) and National Natural Science Foundation of China (51874333)The project was supported by the Fundamental Research Funds for the Central Universities 18CX02073ANational Natural Science Foundation of China 51874333

Figures(17)

  • A reasonable and effective macromolecular model of bituminous coal was established. The molecular dynamics method based on reactive force field (ReaxFF) was used to simulate the pyrolysis process of typical bituminous coal in the range of 1400-2600 K. The distribution of products and evolution of intermediate radicals were analyzed. Calculation results showed that with increase of pyrolysis temperature, yield of char firstly increased and then decreased, while the trend in tar production was opposite. Yield of pyrolysis gas increased monotonously with increasing temperature. The pyrolysis of coal at low temperature mainly experienced primary reaction with formation of tar free radical fragments and small molecular gases. At high temperature, the secondary reaction of tar fragments was remarkable, and char with more content but less quantity and small molecular gas with more content and quantity were produced. The temperature turning point from the primary reaction to the second one was 2000 K. Under the high temperature pyrolysis conditions, C and H in coal gradually migrated into char and tar, while oxygen-containing functional groups were more active, resulting in migration of O to pyrolysis gases. In the secondary reaction stage, comparing chemical properties of the three elements C, H and O, O was the most active, H was the second, and C was the most stable. H2O was firstly released during pyrolysis. NH3 mainly came from secondary reactions during which H2S was consumed and converted into other products. Yield of H2 was the highest, and increased with increasing pyrolysis temperature. A large amount of H2 was generated in secondary reactions, which was mainly from collision of hydrogen radicals generated from pyrolysis and condensation of aromatic structures. Based on ReaxFF simulation results, the weightless activation energy of coal pyrolysis was 39.45 kJ/mol.
  • 加载中
    1. [1]

      YUE Guang-xi, ZHOU Da-li, TIAN Wen-long, MA Lin-wei, LIU Qing, ZHANG Jing-hao, WANG Zhi-xuan, LONG Hui, LIAO Hai-yan. Preliminary discussion on the technology roadmap of clean coal combustion in China[J]. Eng Sci, 2018,20(3):74-79.  

    2. [2]

      CHEN Zhao-hui, DUN Qi-meng, SHI Yong, GAO Shi-qiu. Effects of pyrolysis temperature and atmosphere on rapid coal pyrolysis in transport bed reactor[J]. CIESC J, 2017,68(4):1566-1573.  

    3. [3]

      CHANG Qing-hua, LI Hong-jun, CUI Tong-min, FAN Wen-ke, YU Guang-suo, WANG Fu-chen. Effect of moisture content on gas release and pore structure development of wetted Shenfu coal during rapid pyrolysis[J]. J Fuel Chem Technol, 2017,45(4):427-435.  

    4. [4]

      YANG Zhi-rong, MENG Qing-yan, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Interaction between Shenmu coal and different caking coals during co-pyrolysis[J]. J Fuel Chem Technol, 2018,46(6):641-648.  

    5. [5]

      ZHAO Ning, LIU Dong, ZHAO Meng-meng, ZHANG Zhi-chen, XIANG Zai-jin. Rotary pyrolysis characteristic of low rank coal from northern Shaanxi[J]. J China Univ Pet, 2019,43(3):167-175.  

    6. [6]

      HE W J, LIU Z Y, LIU Q Y, CI D H, LIEVENS C, GUO X F. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel, 2014,134:375-380. doi: 10.1016/j.fuel.2014.05.064

    7. [7]

      GODDARD W A, MERINOV B, van DUIN A C T, JACOB T, BLANCO M, MOLINERO V, JANG S S, JANG Y H. Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes[J]. Mol Simul, 2006,32(3/4):251-268.  

    8. [8]

      ZHANG X X, XIE M, WU H X, LÜ X X, ZHOU Z J. DFT study of the effect of Ca on NO heterogeneous reduction by char[J]. Fuel, 2020,265116995. doi: 10.1016/j.fuel.2019.116995

    9. [9]

      ZHANG X X, WU H X, XIE M, LÜ X X, ZHOU Z J, LIN R Y. A thorough theoretical exploration of the effect mechanism of Fe on HCN heterogeneous formation from nitrogen-containing char[J]. Fuel, 2020,280118662. doi: 10.1016/j.fuel.2020.118662

    10. [10]

      XÜ Zi-yang, YUE Shuang, WANG Chun-bo, LIU Rui-qi. Reaction mechanism of NO reduction with CO catalyzed by char[J]. J Fuel Chem Technol, 2020,48(3):266-274.  

    11. [11]

      LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO (100) surface[J]. J Fuel Chem Technol, 2020,48(2):172-178.  

    12. [12]

      DENG Jun, LI Ya-qing, ZHANG Yu-tao, YANG Chao-ping, ZHANG Jing, SHI Xue-qiang. Effects of hydroxyl on oxidation characteristics of side chain active groups in coal[J]. J China Coal Soc, 2020,45(1):232-240.  

    13. [13]

      HOU Ying-fei, JIANG Chi, LI Li-jun, LIU En-jie, LIN Peng-fei, NIU Qing-shan. Diffusion behavior of gasoline components in crosslinked ethyl cellulose by molecular dynamics simulation[J]. J China Univ Pet, 2018,42(1):171-176.  

    14. [14]

      AGRAWALLA S, VAN DUIN A C T. Development and application of a reaxff reactive force field for hydrogen combustion[J]. J Phys Chem A, 2011,115(6):960-972. doi: 10.1021/jp108325e

    15. [15]

      ZHANG L, ZYBIN S V, VAN DUIN A C T, DASGUPTA S, GODDARD W A. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from Reax FF reactive molecular dynamics simulations[J]. J Phys Chem A, 2009,113(40):10619-10640. doi: 10.1021/jp901353a

    16. [16]

      MONTI S, COROZZI A, FRISTRUP P, JOSHI K L, SHIN Y K, OELSCHLAEGER P, VAN DUIN A C T, BARONE V. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field[J]. Phys Chem Chem Phys, 2013,15(36):15062-15077. doi: 10.1039/c3cp51931g

    17. [17]

      SENFTLE T P, HONG S, ISLAM M M, KYLASA S B, ZHENG Y X, SHIN Y K, JUNKERMEIER C, ENGEL-HERBERT R, JANIK M J, AKTULGA H M, VERSTRAELEN T, GRAMA A, VAN DUIN A C T. The ReaxFF reactive force-field:Development, applications and future directions[J]. NPJ Comput Mater, 2016,2(1):9396-9409.  

    18. [18]

      CASTRO-MARCANO F, RUSSO M F, VAN DUIN A C T, MATHEWS J P. Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the Reax FF reactive force field[J]. J Anal Appl Pyrolysis, 2014(109):79-89.  

    19. [19]

      CASTRO-MARCANO F, KAMAT A M, RUSSO M F, van DUIN A C T, MATHEWS J P. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the Reax FF reactive force field[J]. Combust Flame, 2011,159(3):1272-1285.  

    20. [20]

      ZHENG M, LI X X, LIU J, WANG Z, GONG X M, GUO L, SONG W L. Pyrolysis of Liulin coal simulated by GPU-Based ReaxFF MD with cheminformatics analysis[J]. Energy Fuels, 2014,28(1):522-534. doi: 10.1021/ef402140n

    21. [21]

      ZHENG M, YANG P, WANG Z, LI X X, LI G. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020268.  

    22. [22]

      GAO M J, LI X X, GUO L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Process Technol, 2018,178:197-205. doi: 10.1016/j.fuproc.2018.05.011

    23. [23]

      HONG D K, GUO X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017,210(1):58-66.  

    24. [24]

      HONG D K, LIU L, ZhANG S, GUO X. Effect of cooling rate on the reaction of volatiles from low-rank coal pyrolysis:Molecular dynamics simulations using ReaxFF[J]. Fuel Process Technol, 2018,178:133-138. doi: 10.1016/j.fuproc.2018.05.033

    25. [25]

      ZHOU Xing-yu, ZENG Fan-gui, XIANG Jian-hua, DENG Xiao-peng, XIANG Xing-hua. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. CIESC J, 2020,71(4):1802-1811.  

    26. [26]

      GAO Ming-jie. Pyrolysis simulation of Fugu subbituminous coal by reaxFF molecular dynamics[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2019. 

    27. [27]

      ZHENG M, LI X X, GUO L. Investigation of N behavior during coal pyrolysis and oxidation using ReaxFF molecular dynamics[J]. Fuel, 2018,233:867-876. doi: 10.1016/j.fuel.2018.06.133

    28. [28]

      GAO Ning, WANG Yi-chao, LIU Yu-hong. Molecular dynamics simulations of thermal pyrolysis of novel dipropargyl ether of bisphenol A based boron-containing polymer[J]. CIESC J, 2015,66(4):1557-1564.  

    29. [29]

      YUAN Ming, LIN Hua-lin, LI Ke-jian. Coal macromolecular structure models and relevant research methods[J]. Clean Coal Technol, 2013,19(2):42-46.  

    30. [30]

      WISER W H, ANDERSON L L, QADER S A, HILL G R. Kinetic relationship of coal hydrogenation, pyrolysis and dissolution[J]. J Chem Technol Biot, 1971,21(3):82-86.  

    31. [31]

      ZHENG Mo. Coal pyrolysis simulation by GPU-based reactive force field molecular dynamics (ReaxFF MD)[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2015.

    32. [32]

      MIURA K, SHIMADA M, MAE K, SOCK H Y. Extraction of coal below 350℃ in flowing non-polar solvent[J]. Fuel, 2001,80(11):1573-1582. doi: 10.1016/S0016-2361(01)00036-9

    33. [33]

      GONG X M, WANG Z, LI S G, SONG W L, LIN W G. Coal pyrolysis in a laboratory-scale two-stage reactor:Catalytic upgrading of pyrolytic vapors[J]. Chem Eng Technol, 2014,37(12).  

    34. [34]

      GONG X M, WANG Z, DENG S W, LI S G, SONG W L, LIN W G. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy Fuels, 2014,28(8):4942-4948. doi: 10.1021/ef500986h

    35. [35]

      ZHENG M, LI X X, LIU J, GUO L. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy Fuels, 2013,27(6):2942-2951. doi: 10.1021/ef400143z

    36. [36]

      DONG T, MURATA S, MIURA M, NOMURA M, NAKAMURA K. Computer-aided molecular design study of coal model molecules. 3. Density simulation for model structures of bituminous Akabira coal[J]. Energy Fuels, 2002,7(6):1123-1127.  

    37. [37]

      NAKAMURA K, MURATA S, NOMURA M. CAMD study of coal model molecules. 1. Estimation of physical density of coal model molecules[J]. Energy Fuels, 2002,7(3):347-350.  

    38. [38]

      VAN DUIN A C T, DASGUPTA S, LORANT F, GODDARD W A. ReaxFF:A reactive force field for hydrocarbons[J]. J Phys Chem A, 2001,105(41):9396-9409. doi: 10.1021/jp004368u

    39. [39]

      HONG Di-kun. Study on the pyrolysis and oxy-fuel combustion of Zhundong coal using reactive molecular dynamics simulations[D]. Wuhan: Huazhong University of Science and Technology, 2018. 

    40. [40]

      HONG Di-kun, CAO Zheng, YANG Chang-min, LIU Liang, GUO Xin. Catalytic effect of calcium on reaction of phenol using reactive molecular dynamics simulation[J]. CIESC J, 2019,70(5):1788-1794.  

    41. [41]

      ZHENG M, LI X X, WANG M J, GUO L. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019,253:910-920. doi: 10.1016/j.fuel.2019.05.085

    42. [42]

      HONG Di-kun, LIU Liang, CAO Zheng, YANG Chang-min, GUO Xin. Molecular dynamics simulation of Wucaiwan coal pyrolysis via ReaxFF[J]. J China Coal Soc, 2019,44(S1):271-277.  

    43. [43]

      LEI Zhao, YANG Ding, ZHANG Yun-He, CUI Ping. Constructions of coal and char molecular models based on the molecular simulation technology[J]. J Fuel Chem Technol, 2017,45(7):769-779.

    44. [44]

      HUMPHREY W, DALKE A, SCHULTEN K. VMD:visual molecular dynamics[J]. J Mol Graphics Modell, 1996,14:33-38. doi: 10.1016/0263-7855(96)00018-5

    45. [45]

      SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis[J]. Fuel, 1993,72(5):587-597. doi: 10.1016/0016-2361(93)90570-R

    46. [46]

      WANG Lian-cong, LIANG Yun-tao. Spectral analysis on laws of generation and variability of CO during oxygen-free programmed temperature of coal[J]. J China Coal Soc, 2017,42(7):1790-1794.  

    47. [47]

      LIU J X, JIANG X M, SHEN J, ZHANG H. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation[J]. Energ Convers Manage, 2014,87:1027-1038. doi: 10.1016/j.enconman.2014.07.053

    48. [48]

      DOMAZETIS G, JAMES B D. Molecular models of brown coal containing inorganic species[J]. Org Geochem, 2007,37(2):244-259.  

    49. [49]

      MAO Ning, WANG Qiang, YANG Yan, XU Dun-xin, FENG Wei, ZHANG Jin-peng, BAI Hong-cun, GUO Qing-jie. Pyrolysis characteristics and kinetics analysis of Qinghua coal, Ningxia based on chemical bonding characteristics of macerals[J]. CIESC J, 2020,71(2):811-820+903.  

    50. [50]

      WU Jie, DI Zuo-xing, LUO Ming-sheng, WANG Ya-tao, DING Xiao-xiao. Study of the effects of temperature and pressure on the coal pyrolysis in the atmosphere of N2[J]. Chem Ind Eng Prog, 2019, 38(S1): 116-121. 

    51. [51]

      LIU Z T, ZHAN J H, LAI D G, ZUO M H, LIU X X. Effects of different temperature chars on distribution of pyrolysates for Naomaohu coal[J]. J Therm Anal Calorim, 2020.  

    52. [52]

      DENG Yi-ying. The pyrolysis experiment study of pingshuo coal[J]. Clean Coal Technology, 2008,14(2):56-58, 66.  

    53. [53]

      SOLOMON P R, SERIO M A, SUUBERG E M. Coal pyrolysis:Experiments, kinetic rates and mechanisms[J]. Prog Energy Combust Sci, 1992,18(2):133-220. doi: 10.1016/0360-1285(92)90021-R

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    9. [9]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    10. [10]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    11. [11]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    12. [12]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    16. [16]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    17. [17]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    18. [18]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    19. [19]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    20. [20]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

Metrics
  • PDF Downloads(12)
  • Abstract views(1790)
  • HTML views(469)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return