Citation: YANG Jian, LIN Fan, CHEN Kui, KONG Ming, ZHAO Dong, MENG Fei. Activity and SO2 deactivation mechanism of vanadium series catalyst containing cerium[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1394-1400. shu

Activity and SO2 deactivation mechanism of vanadium series catalyst containing cerium

  • Corresponding author: YANG Jian, skyinjune@cqu.edu.cn
  • Received Date: 13 June 2016
    Revised Date: 17 July 2016

    Fund Project: the National Natural Science Foundation of China 51204220National Natural Science Foundation of Chongqing cstc2013jjB0035the National Natural Science Foundation of China 51274263

Figures(7)

  • The promotion effect of Ce modification on V2O5-WO3/TiO2 for the selective catalytic reduction (SCR) of NOx with NH3 and the SO2 deactivation mechanism were investigated. Compared with V1W5Ti catalyst, the advantage of V1W5Ce6Ti catalyst shows a good catalytic activity. These catalysts were investigated by means of XRD, BET, FT-IR, TG-DSC and XPS. The results demonstrate that the active components of V and W are well-dispersed, while a small cluster of cubic CeO2 appears over the V1W5Ce8Ti catalyst. The sulfation of V1W5Ti under reactive conditions can generate NH4HSO4 and (NH4)2SO4 at 250℃. The Ce additive to V1W5Ti could provide stronger Brønsted acid sites and more chemisorbed oxygen. The deposited ammonium sulfate on V1W5Ce6Ti catalyst is much smaller than that on V1W5Ti because the cerium sulfates species on the surface of V1W5Ce6Ti is formed and the deposition of ammonium sulfate is inhibited, which can disrupt the redox cycle between Ce3+ and Ce4+ and break the V-O-Ce structure, causing the deactivation of V1W5Ce6Ti catalyst.
  • 加载中
    1. [1]

      ZHANG L, LI L, CAO Y, YAO X, GE C, GAO F, DENG Y, TANG C, DONG L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029

    2. [2]

      KONG M, LIU Q C, ZHU B H, YANG J, LI L, ZHOU Q, REN S. Synergy of KCl and Hg-el on selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Chem Eng J, 2015,264:815-823. doi: 10.1016/j.cej.2014.12.038

    3. [3]

      JIN R, LIU Y, WANG Y, CEN W, WU Z, WANG H, WENG X. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B:Environ, 2014,148:582-588.

    4. [4]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1):1-36.

    5. [5]

      OLIVERI G, BUSCA G, LORENZELLI V. Structure and surface-area evolution of vanadia-on-titania powders upon heat-treatment[J]. Mater Chem Phys, 1989,22(5):511-521. doi: 10.1016/0254-0584(89)90063-1

    6. [6]

      AMORES J M G, ESCRIBANO V S, BUSCA G. Anatase crystal-growth and phase-transformation to rutile in high-area TiO2, MoO3-TiO2 and other TiO2-supported oxide catalytic-systems[J]. J Mater Chem, 1995,5(8):1245-1249. doi: 10.1039/JM9950501245

    7. [7]

      CHEN J P, BUZANOWSKI M A, YANG R.T, CICHANOWICZ J E. Deactivation of the vanadia catalyst in the selective catalytic reduction process[J]. J Air Waste Manage, 1990,40(10):1403-1409. doi: 10.1080/10473289.1990.10466793

    8. [8]

      JIANG Y, XING Z, WANG X, ET A L. Activity and characterization of a Ce-W-Ti oxide catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with NH3[J]. Fuel, 2015,151:124-129. doi: 10.1016/j.fuel.2015.01.061

    9. [9]

      LEE K J, KUMAR P A, MAQBOOL M S. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR:Physico-chemical properties and catalytic activity[J]. Appl Catal B:Environ, 2013,142:705-717.

    10. [10]

      KWON D W, NAM K B, HONG S C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3[J]. Appl Catal B:Environ, 2015,166-167:37-44. doi: 10.1016/j.apcatb.2014.11.004

    11. [11]

      LIU Xin, NING Ping, LI Hao, SONG Zhong-xian, WANG Yan-cai, ZHANG Jin-hui, TANG Xiao-su, WANG Ming-zhi, ZHANG Qiu-lin. Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst[J]. J Fuel Chem Technol, 2016,44(2):225-231. doi: 10.1016/S1872-5813(16)30010-X 

    12. [12]

      KWON D W, PARK K H, HONG S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chem Eng J, 2016,284:315-324. doi: 10.1016/j.cej.2015.08.152

    13. [13]

      ZHANG L, LI L, CAO Y. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029

    14. [14]

      KONG M, LIU Q, WANG X, REN S, YANG J, ZHAO D, XI W, YAO L. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst[J]. Catal Commun, 2015,72:121-126. doi: 10.1016/j.catcom.2015.09.029

    15. [15]

      ZHAO H, BENNICI S, SHEN J, AUROUX A. The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42- catalysts[J]. Appl Catal A:Gen, 2009,356(2):121-128. doi: 10.1016/j.apcata.2008.12.037

    16. [16]

      STOILOVA D, GEORGIEV M, MARINOVA D. Infrared study of the vibrational behavior of CrO42- guest ions matrix-isolated in metal (Ⅱ) sulfates (Me=Ca, Sr, Ba, Pb)[J]. J Mol Struct, 2005,738(1):211-215.  

    17. [17]

      TOPSØE N Y, DUMESIC J A, TOPSØE H. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia. Ⅱ. Studies of active sites and formulation of catalytic cycles[J]. J Catal, 1995,151(1):241-252. doi: 10.1006/jcat.1995.1025

    18. [18]

      GUO XY, BARTHOLOMEW C, HECKER W, BAXTER LL. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Appl Catal B:Environ, 2009,92(1):30-40.

    19. [19]

      MA Z, WU XD, FENG Y, SI ZC, WENG D, SHI L. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst[J]. Prog Nat Sci Mater, 2015,25(4):342-352. doi: 10.1016/j.pnsc.2015.07.002

    20. [20]

      YANG J, YANG Q, SUN J. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015,59:78-82. doi: 10.1016/j.catcom.2014.09.049

    21. [21]

      KOHIKI S, SHIMOOKA H, TAKADA S, SHIMIZU A, HIRAKAWA T, TAKAHASHI S. Synthesis and magnetic properties of mesoporous vanadium oxide sulphate[J]. Chem Lett, 2002,7:670-671.

    22. [22]

      LIU CX, CHEN L, LI JH, MA L, ARANDIYAN H, DU Y. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3[J]. Environ Sci Technol, 2012,46(11):6182-6189. doi: 10.1021/es3001773

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    9. [9]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    16. [16]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

Metrics
  • PDF Downloads(5)
  • Abstract views(2291)
  • HTML views(1088)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return