Citation: CAO Yue, CHEN Chuan-min, LIU Song-tao, JIA Wen-bo. Study on the Hg0 and NH3 oxidation performance of copper modified attapulgite catalysts[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1171-1178. shu

Study on the Hg0 and NH3 oxidation performance of copper modified attapulgite catalysts

  • Corresponding author: CHEN Chuan-min, hdccm@126.com LIU Song-tao, taonyliu@163.com
  • Received Date: 10 September 2020
    Revised Date: 28 September 2020

    Fund Project: The Fundamental Research Funds for the Central Universities 2018MS118The project was supported by the National Natural Science Foundation of China (51976060) and the Fundamental Research Funds for the Central Universities (2018MS118).the National Natural Science Foundation of China 51976060

Figures(10)

  • A copper-modified attapulgite (Cu3-ATP) catalyst with both mercury oxidation and ammonia oxidation activities was prepared by an improved wet impregnation method. Several characterization including SEM, H2-TPR and NH3-TPD were performed on it, and its mercury oxidation and ammonia oxidation performance were tested at 150-400 ℃. The results show that the copper species is successfully loaded on ATP surface, which significantly improves the redox ability of the catalyst, increases the strong acid sites and partial strong acid sites on the surface, and thus promotes the oxidation of Hg0 and NH3. HCl plays an important role in Hg0 oxidation. High temperature is not conducive to the Hg0 oxidation reaction, but can promote the oxidation of NH3. At 350 ℃, the oxidation efficiencies of Hg0 and NH3 over Cu3-ATP are both above 90%. Experiments on the influencing factors show that NH3 has an obvious inhibitory effect on mercury oxidation at high space velocity, while low concentrations of Hg0 and HCl have no significant influence on ammonia oxidation. When the gas hourly space velocity (GHSV) is lower than 5×104 h-1, Cu3-ATP can simultaneously oxidize NH3 and Hg0. In addition, the mercury oxidation reaction shows good sulfur resistance and water resistance, but SO2 has a certain inhibitory effect on ammonia oxidation.
  • 加载中
    1. [1]

      GOLDING G R, KELLY C A, SPARLING R, LOEWEN P C, BARKAY T. Evaluation of mercury toxicity as a predictor of mercury bioavailability[J]. Environ Sci Technol, 2007,41(16):5685-5692. doi: 10.1021/es070138i

    2. [2]

      PACYNA E G, PACYNA J M, SUNDSETH K, MUNTHE J, KINDBOM K, WILSON S, STEENHUISEN F, MAXSON P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmos Environ, 2010,44(20):2487-2499. doi: 10.1016/j.atmosenv.2009.06.009

    3. [3]

      LIU Y, ADEWUYI Y G. A review on removal of elemental mercury from flue gas using advanced oxidation process:Chemistry and process[J]. Chem Eng Res Des, 2016,112:199-250. doi: 10.1016/j.cherd.2016.06.024

    4. [4]

      LI Jian-rong, HE Chi, SHANG Xue-song, CHEN Jin-sheng, YU Xiao-wei, YAO Yuan-jun. Oxidation efficiency of elemental mercury in flue gas by SCR De-NOx catalysts[J]. J Fuel Chem Technol, 2012,40(2):241-246.  

    5. [5]

      EOM Y, JEON S H, NGO T A, KIM J, LEE T G. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008,121(3):219-225.  

    6. [6]

      KAMATA H, UENO S, NAITO T, YUKIMURA A. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res, 2015,47(21):8136-8141.  

    7. [7]

      DRANGA B, LAZAR L, KOESER H. Oxidation catalysts for elemental mercury in flue gases-A review[J]. Catalysts, 2012,2(4):139-170.  

    8. [8]

      WANG Y, CHANG H, SHI C, DUAN L, LI J, ZHANG G, GUO L, YOU Y. Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for Hg0 oxidation in the presence of NH3[J]. Catal Commun, 2017,100:210-213.  

    9. [9]

      LI H, ZHANG W, WANG J, YANG Z, LI L, SHIH K. Coexistence of enhanced Hg0 oxidation and induced Hg2+ reduction on CuO/TiO2 catalyst in the presence of NO and NH3[J]. Chem Eng J, 2017,330:1248-1254. doi: 10.1016/j.cej.2017.08.043

    10. [10]

      WU W, ZENG Z, LU P, XING Y, YUE H, LI R. Simultaneous oxidation of Hg0 and NH3-SCR of NO by nanophase CexZryMnzO2 at low temperature:the interaction and mechanism[J]. Environ Sci Pollut R, 2018,25:14471-14485. doi: 10.1007/s11356-018-1657-3

    11. [11]

      ZHAO B, YI H, TANG X, LI Q, LIU D, GAO F. Using CuO-MnOx/AC-H as catalyst for simultaneous removal of Hg0 and NO from coal-fired flue gas[J]. J Hazard Mater, 2019,364:700-709. doi: 10.1016/j.jhazmat.2018.04.001

    12. [12]

      LI H, WU C, LI Y, ZHANG J. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012:111-388.  

    13. [13]

      ZHANG S, ZHANG Q, ZHAO Y, YANG J, XU Y, ZHANG J. Enhancement of CeO2 modified commercial SCR catalyst for synergistic mercury removal from coal combustion flue gas[J]. RSC Adv, 2020,10:25325-25338. doi: 10.1039/D0RA04350H

    14. [14]

      ZHANG S, ZHAO Y, YANG J, ZHANG Y, SUN P, YU X, ZHANG J, ZHENG C. Simultaneous NO and mercury removal over MnOx/TiO2 catalyst in different atmospheres[J]. Fuel Process Technol, 2017,166:282-290.  

    15. [15]

      XU H, QU Z, ZONG C, QUAN F, MEI J, YAN N. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas[J]. Appl Catal B:Environ, 2016,186:30-40.  

    16. [16]

      CHEN W, MA Y, YAN N, QU Z, YANG S, XIE J, GUO Y, HU L, JIA J. The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts[J]. Fuel, 2014,133:263-269. doi: 10.1016/j.fuel.2014.04.086

    17. [17]

      SHI Bo-wen. Preparation and characterization of palygorskite supported transition metal oxides catalyst for low-temperature selected catalytic reduction(SCR) of NO by NH3[D]. Hefei: Hefei University of Technology, 2012.

    18. [18]

      CHEN Hao, HUANG Ya-ji, DONG Lu, CAO Jian-hua, XIA Zhi-peng, QIN Wen-hui. Study on the preparation of magnetic attapulgite and its mercury removal performance[J]. J Fuel Chem Technol, 2018,46(11):1392-1400.  

    19. [19]

      CHEN T, LIU H, LI J, CHEN D, CHANG D, KONG D, FROST R. Effect of thermal treatment on adsorption-desorption of ammonia and sulfur dioxide on palygorskite:Change of surface acid-alkali properties[J]. Chem Eng J, 2011,166(3):1017-1021.  

    20. [20]

      HAN Fen-nv. Preparation of SCR catalyst supported on attapulgite and its performance of denitrification and mercury removal[D]. Nanjing: Nanjing University of Science Technology 2019.

    21. [21]

      LU Yu, WU Fei, ZHANG Qiu-xiang, MA Hai-bo, LU Hong-bin, XU Qi. Molten salt synthesis of Fe2O3-ATP for catalytic oxidation of elemental mercury[J]. Appl Chem Ind, 2017,46(3):405-408.  

    22. [22]

      SHI D, LU Y, TANG Z, HAN F, CHEN R, XU Q. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite[J]. Korean J Chem Eng, 2014,31(8):1405-1412.  

    23. [23]

      CHEN C, CAO Y, LIU S, JIA W. The catalytic properties of Cu modified attapulgite in NH3-SCO and NH3-SCR reactions[J]. Appl Surf Sci, 2019,480:537-547.  

    24. [24]

      RUTKOWSKA M, PIWOWARSKA Z, MICEK E, CHMIELARZ L. Hierarchical Fe-, Cu- and Co-Beta zeolites obtained by mesotemplate-free method. Part Ⅰ:Synthesis and catalytic activity in N2O decomposition[J]. Microporous Mesoporous Mater, 2015,209:54-65. doi: 10.1016/j.micromeso.2014.10.011

    25. [25]

      LI Y, DENG J, SONG W, LIU J, ZHAO Z, GAO M, WEI Y, ZHAO L. Nature of Cu species in Cu-SAPO-18 catalyst for NH3-SCR:Combination of experiments and DFT calculations[J]. J Phys Chem C, 2016,120(27):14669-14680. doi: 10.1021/acs.jpcc.6b03464

    26. [26]

      WANG J, YU T, WANG X, QI G, XUE J, SHEN M, LI W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR[J]. Appl Catal B:Environ, 2012,127:137-147. doi: 10.1016/j.apcatb.2012.08.016

    27. [27]

      VALYON J, HALL W K. Effects of reduction and reoxidation on the infrared spectra from Cu-Y and Cu-ZSM-5 zeolites[J]. J Phys Chem, 1993,97(27):7054-7060.  

    28. [28]

      SULTANA A, NANBA T, HANEDA M, SASAKI M, HAMADA H. Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2010,101(1):61-67.  

    29. [29]

      RICHTER M, FAIT M J G, ECKELT R, SCHREIER E, SCHNEIDER M, POHL M M, FRICKE R. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Appl Catal B:Environ, 2007,73(3):269-281.  

    30. [30]

      YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology, 2008,180(1/2):222-226.  

    31. [31]

      LI H, WU S, WU C, WANG J, LI L, SHIH K. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst[J]. Environ Sci Technol, 2015,49(12):7373-7379. doi: 10.1021/acs.est.5b01104

    32. [32]

      CHEN C, CAO Y, LIU S, JIA W. The effect of SO2 on NH3-SCO and SCR properties over Cu/SCR catalyst[J]. Appl Surf Sci, 2020,507145153.  

    33. [33]

      JABŁOHSKA M, PALKOVITS R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-Recent trends and open challenges[J]. Appl Cataly B:Environ, 2016,181:332-351.  

    34. [34]

      HE S, ZHANG C, YANG M, ZHANG Y, XU W, CAO N, HE H. Selective catalytic oxidation of ammonia from MAP decomposition[J]. Sep Purif Technol, 2007,58(1):173-178.  

  • 加载中
    1. [1]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    9. [9]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    14. [14]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(4)
  • Abstract views(1025)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return