Citation: LI Fan, ZHU Li-hua, XU Feng. Hydrogen production from methane/steam by dielectric barrier discharge plasma reforming[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 566-573. shu

Hydrogen production from methane/steam by dielectric barrier discharge plasma reforming

  • Corresponding author: XU Feng, xufeng79_79@163.com
  • Received Date: 20 November 2018
    Revised Date: 11 March 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China(51874126) and Natural Science Foundation of Heilongjiang Province of China(E2018053)Natural Science Foundation of Heilongjiang Province of China E2018053the National Natural Science Foundation of China 51874126

Figures(6)

  • The hydrogen production by methane/steam reforming at atmospheric pressure was investigated by using a self-made dielectric barrier discharge experimental system.The effect of water/carbon ratio (steam/methane molar ratio), total gas flow, discharge voltage and discharge frequency on the methane conversion, hydrogen and other major product yields was examined.The experimental results show that the methane conversion rate and hydrogen yield increase with the increase of water carbon ratio and discharge voltage, and the methane conversion rate and hydrogen yield increase first and then decrease with the increase of total gas flow rate and discharge frequency. The maximum hydrogen yield (14.38%) can be obtained at the discharge voltage of 18.6 kV, discharge frequency of 9.8 kHz, water/carbon ratio of 3.4, and total reaction gas flow rate of 79 mL/min. In addition, The active group in the discharge process was diagnosed by in-situ emission spectroscopy, and the changing trend in the spectral signal intensity of CH·, OH·, H2 and Hα active particles with the experimental parameters was obtained. The possible generation path of hydrogen is predicted by combining with the discharge mechanism.
  • 加载中
    1. [1]

      WANG B W, LIU Y J, ZHANG X, XU S H. Hydrogen production from methanol through dielectric barrier discharge[J]. J Nat Gas Chem, 2011,5(2):209-214.  

    2. [2]

      PHILIP G R, VADIM A K, VICTOR E P, SERGEY D P, ALEXANDER V S, DMITRY I S, ALEXANDER N B. Conversion of methane by CO2+H2O+CH4 plasma[J]. Appl Energy, 2015,148(C):159-168.

    3. [3]

      SANCHES S G, HUERTAS FLORES J, PAIS DA SILVA M I. Influence of aging time on the microstructural characteristics of a Cu/ZnO based catalyst prepared by homogeneous precipitation for use in methanol steam reforming[J]. React Kinet Mech Catal, 2017,121(2):473-485. doi: 10.1007/s11144-017-1161-7

    4. [4]

      QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018,46(10):1210-1217. doi: 10.3969/j.issn.0253-2409.2018.10.008 

    5. [5]

      XIE Xin-shuo, YANG Wei-juan, SHI Wei, ZHANG Sheng-sheng, WANG Zhi-hua, ZHOU Jun-hu. Life cycle assessment of technologies for hydrogen productiona review[J]. Chem Ind Eng Prog, 2018,37(6):2147-2158.  

    6. [6]

      NAIR S A, NOZAKI T O, OKAZAKI K. Methane oxidative conversion pathways in a dielectric barrier discharge reactor-Investigation of gas phase mechanism[J]. Chem Eng J, 2007,132(1/3):85-95.  

    7. [7]

      INDARTO A, COOWANITWONG N, CHOI JAE-WOOK, LEE H, SONG H K. Kinetic modeling of plasma methane conversion in a dielectric[J]. Fuel Process Technol, 2008,89(2):214-219. doi: 10.1016/j.fuproc.2007.09.006

    8. [8]

      SHAO Tao, YAN Ping. Atmospheric Gas Discharge and its Plasma Application[M]. Beijing:Science Press, 2015.

    9. [9]

      QIAN Bo-zhang. A new plasma method for converting CO2 and methane into higher value fuels and chemicals in one step[J]. Nat Gas Chem Ind, 2017,42(5)125.  

    10. [10]

      KHADIR N, KHODJA K, BELASRI A. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen[J]. Plasma Sci Technol, 2017,19(9):81-90.  

    11. [11]

      HU S H, WANG B W, LV Y J, YAN W J. Conversion of methane to C2 hydrocarbons and hydrogen using a gliding arc reactor[J]. Plasma Sci Technol, 2013,15(6):555-561. doi: 10.1088/1009-0630/15/6/13

    12. [12]

      SHIGERU K, KOHEI U, YASUSHI S, KAORU F, TOMOHIRO N, KEN O. Reaction mechanism of methane activation using non-equilibriumpulseddischarge at room temperature[J]. Fuel, 2003,82(18):2291-2297. doi: 10.1016/S0016-2361(03)00163-7

    13. [13]

      WANG Hao, SONG Ling-jun, LI Xing-hu, YUE Li-meng. Hydrogen production from partial oxidation of methane by dielectric barrier discharge plasma reforming[J]. Acta Phys-Chim Sin, 2015,31(7):1406-1412.  

    14. [14]

      ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argonr[J]. J Fuel Chem Technol, 2016,44(2):192-200. doi: 10.3969/j.issn.0253-2409.2016.02.009 

    15. [15]

      WANG Y F, TSAI C H, CHANG W Y, KUO Y M. Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor[J]. Intl J Hydrogen Energy, 2010,35(1):135-140. doi: 10.1016/j.ijhydene.2009.10.088

    16. [16]

      XU Feng, ZHU Li-hua, LI Chuang. Mechanism of activation and conversion of coalbed methane under cold plasma by optical emission spectroscopy[J]. Chin J Lumin, 2017,38(3):372-379.  

    17. [17]

      WEI Bo, LUO Zhong-yang, XU Fei, ZHAO Lei, GAO Xiang, CEN Ke-fa. Study of emission spectroscopy of OH radicals in pulsed corona discharge[J]. Spectrosc Spect Anal, 2010,30(2):293-296. doi: 10.3964/j.issn.1000-0593(2010)02-0293-04

    18. [18]

      LUO Li-xia, WU Wei-dong, ZHU Yong-hong, TANG Yong-jian. Spectrum analysis of plasma in CH4/H2 and CH4/He systems[J]. High Power Laser Part Beams, 2008,20(6):899-902.  

    19. [19]

      LIU Yong-wei. Study on methane-steam conversion with dielectric-barrier discharge[D]. Tianjin: Tianjin University, 2008. 

    20. [20]

      ZHAO G B, JOHN S, ZHANG J J, WANG L N. Methane conversion inpulsed corona discharge reactors[J]. Chem Eng J, 2006,125(2):67-79.  

    21. [21]

      YAN Wen-juan. Dielectric barrier pure plasma pure CH4 conversion to low carbon hydrocarbons[D]. Tianjin: Tianjin University, 2008. 

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    14. [14]

      Chang Guo Haipeng Yang Hui Fang Yingguo Zhao Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049

    15. [15]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    16. [16]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    17. [17]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    18. [18]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    19. [19]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    20. [20]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

Metrics
  • PDF Downloads(9)
  • Abstract views(1114)
  • HTML views(253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return