Citation: CHEN Guang-hui, LI Yu, ZHANG Chang-sen, ZHANG Rui-qin. Influence of CeO2 on the carbonaceous deposition behavior of Ni-Cu/HZSM-5 catalyst in the hydrodeoxygenation of bio-oil[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 449-457. shu

Influence of CeO2 on the carbonaceous deposition behavior of Ni-Cu/HZSM-5 catalyst in the hydrodeoxygenation of bio-oil

  • Corresponding author: ZHANG Rui-qin, rqzhang@zzu.edu.cn
  • Received Date: 30 December 2016
    Revised Date: 4 February 2017

    Fund Project: the Henan Science and Technology Cooperation and Open Project 142106000046

Figures(7)

  • The influence of CeO2 as an additive on the carbonaceous deposition behavior of Ni-Cu/H-ZSM-5 catalyst in the hydrodeoxygenation (HDO) of bio-oil was investigated. Various techniques such as thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used to elucidate the content and microstructure of carbon deposited on the catalyst surface, the transformation of various forms of carbon (soft carbon, hard carbon and graphite) in HDO, and the kinetics of carbon deposition. The results indicate that the content of CeO2 added in the Ni-Cu based catalyst and the reaction temperature both have a significant influence on the carbon deposition behavior and the resistance against coking for HDO of bio-oil; for HDO over the Ni-Cu/HZSM-5 catalyst at 270℃, adding 15% CeO2 gives the Ni-Cu catalyst highest resistance against the carbon deposition.
  • 加载中
    1. [1]

      LI Y, ZHANG C, LIU Y, ZHAI Y, ZHANG R. Coke deposition on Ni/HZSM-5 in bio-oil hydrodeoxygenation processing[J]. Energy Fuels, 2015,28(1):52-57.  

    2. [2]

      RAMZI F, MAX G M, MAIK E, MAIKE H, WIEBKE F, JASMIN A, FRANK G, LAÁSZLOÓ S, NUÚRIA L, DETRE T. Promoted ceria:A structural, catalytic, and computational study[J]. ACS Catal, 2013,3:2256-68. doi: 10.1021/cs4005002

    3. [3]

      SONG Yi-bing, YU Lin, SUN Chang-yong, YE Fei, FANG Yi-wen, LIN Wei-ming. Effect of Ce promoteron activity and stability of Ce-Ni/Al2O3 in partial oxidation of methane and CO2 reforming of methane to synga[J]. Chin J Catal, 2002,23(3):267-270.  

    4. [4]

      SRISIRIWAT N, THERDTHIANWONG S, THERDTHIANWONG A. Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2[J]. Int J Hydrogen Energy, 2009,34(5):2224-2234. doi: 10.1016/j.ijhydene.2008.12.058

    5. [5]

      MAGNOUX P, MACHADO F, GUISNET M. Mechanism of coke formation during the transformation of propene, toluene and propene-toluene mixture on HZSM-5[J]. Stud Surf Sci Catal, 1993,75:435-447. doi: 10.1016/S0167-2991(08)64029-X

    6. [6]

      XU X, ZHANG C, LIU Y, ZHAI Y, ZHANG R. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels[J]. Chemosphere, 2013,93(4):652-660. doi: 10.1016/j.chemosphere.2013.06.060

    7. [7]

      ZHANG X, WANG T, MA L, ZHANG Q, JIANG T. Hydrotreatment of bio-oil over Ni-based catalyst[J]. Bioresour Technol, 2013,127:306-311. doi: 10.1016/j.biortech.2012.07.119

    8. [8]

      ZHANG H, SHAO S, XIAO R, SHEN D, ZENG J. Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates[J]. Energy Fuels, 2014,28(1):52-57. doi: 10.1021/ef401458y

    9. [9]

      MOLJORD K, MAGNOUX P, GUISNET M. Coking, aging and regeneration of zeolites XV. Influence of the composition of HY zeolites on the mode of formation of coke from propene at 450℃[J]. Appl Catal A:Gen, 1995,122(1):21-32. doi: 10.1016/0926-860X(94)00210-X

    10. [10]

      YANG X, XU S, CHEN Z, LIU J. Improved nickel-olivine catalysts with high coking resistance and regeneration ability for the steam reforming of benzene[J]. React Kinet Mech Catal, 2012,108(2):459-472.  

    11. [11]

      PARK J W, SEO G. IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities[J]. Appl Catal A:Gen, 2009,356(2):180-188. doi: 10.1016/j.apcata.2009.01.001

    12. [12]

      GUICHARD B, ROY-AUBERGER M, DEVERS E, REBOURS B, QUOINEAUD A A, DIGNE M. Characterization of aged hydrotreating catalysts. Part Ⅰ:Coke depositions, study on the chemical nature and environment[J]. Appl Catal A:Gen, 2009,367(1/2):1-8.  

    13. [13]

      CASTAÑO P, ELORDI G, OLAZAR M, ANDRES T, AGUAYO B P. Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene[J]. Appl Catal B:Environ, 2011,104(1/2):91-100.  

    14. [14]

      VOGELAAR B M, VAN LANGEVELD A D, EIJSBOUTS S, MOULIJN J A. Analysis of coke deposition profiles in commercial spent hydroprocessing catalysts using Raman spectroscopy[J]. Fuel, 2007,86(7/8):1122-1129.  

    15. [15]

      ROBERTSON J. Diamond-like amorphous carbon[J]. Mater Sci Eng, R, 2002,37(4):129-281.  

    16. [16]

      WRAGG D S, JOHNSEN R E, BALASUNDARAM M, NORBY P, FUGLERUD T. SAPO-34 methanol-to-olefin catalysts under working conditions:A combined in situ powder X-ray diffraction, mass spectrometry and Raman study[J]. J Catal, 2009,268(2):290-296.

    17. [17]

      TUINSTRA F. Raman spectrum of graphite[J]. J Chem Phys, 1970,53(3)1126. doi: 10.1063/1.1674108

    18. [18]

      TAO G. The XPS analysis of surface texture of different-density-level coking coal of fenxi county[J]. Int J Oil, Gas Coal Eng, 2014,2(4):59-65. doi: 10.11648/j.ogce.20140204.12

    19. [19]

      MORENO-CASTILLA C, LOPEZ-RAMON M, CARRASCO-MARIN F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon, 2000,38(14):1995-2001. doi: 10.1016/S0008-6223(00)00048-8

    20. [20]

      YAO Su-ling, YANG Cai-hong, TAN Yi-sheng, HAN Yi-zhuo. Deactivation of activated carbon supported nickel-palladium catalyst for vapor phase carbonylation of methanol[J]. J Fuel Chem Technol, 2006,34(6):706-711. doi: 10.1016/S1872-5813(07)60006-1 

  • 加载中
    1. [1]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    4. [4]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    10. [10]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    11. [11]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    14. [14]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    15. [15]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    17. [17]

      Ling WANGWeipeng YANZhuoyi ZHENGSihan ZHUMingxian GONGXiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    20. [20]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

Metrics
  • PDF Downloads(5)
  • Abstract views(1545)
  • HTML views(210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return