Citation: LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 338-348. shu

Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis

  • Corresponding author: HOU Xiao-ning, houxn@sxicc.ac.cn GAO Zhi-xian, gaozx@lnpu.edu.cn
  • Received Date: 13 January 2020
    Revised Date: 15 February 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China 21673270The project was supported by the National Natural Science Foundation of China (21673270), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2019L0880) and Ph. D. Research Funding of Jinzhong University (2019)Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi 2019L0880Ph. D. Research Funding of Jinzhong University 2019

Figures(9)

  • Cu-Al spinels were synthesized by a solid phase method using Cu(OH)2 and pseudo-boehmite as the raw materials. The effects of synthesis temperature, synthesis time and Cu/Al molar ratio on the formation and properties of Cu-Al spinels were fully investigated by the thermogravimetry(TG/DTG), X-ray diffraction(XRD), H2 temperature programmed reduction(H2-TPR). The non-isothermal kinetics of Cu-Al spinel formation process were analyzed using Coats-Redfern method and two diffusion-controlled kinetic models. Characterization results showed that the Cu-Al surface spinels with unsaturated coordination formed easily at the temperature as low as 400℃, and the content of these surface spinel decreased sharply with the synthesis temperature rising. The hardly-reducible spinel Cu2+ species and easily-reducible spinel Cu2+ species were identified at the synthesis temperature of 700 and 800℃, respectively. The spinel content increased gradually with the synthesis temperature increasing, leading to the formation of Al-rich spinel solid solutions with different Cu/Al molar ratios. At a higher temperature of 1200℃, however, the formation of stoichiometric CuAl2O4 spinel was observed. Hence, the spinel reducibility varied dramatically with the synthesis temperature as illustrated by the drastic change of the molar ratio of hardly-reducible spinel Cu2+ species and easily-reducible spinel Cu2+ species. An appropriate excess of Al3+(Cu/Al=1:3) could result in the formation of spinel solid solution with more hardly-reducible spinel Cu2+ species, while an excess of Cu2+ would lead to the formation of delafossite-type CuAlO2. Both samples owned low reducibility as compared to the stochiometric CuAl2O4 spinel. Besides, a longer synthesis time would favor the spinel formation as well but to a limited extent. Non-isothermal kinetics analysis showed that the formation process of Cu-Al spinel owned three kinetic regions in terms of synthesis temperature, namely 700-850, 850-950 and 950-1200℃, and the apparent activation energies were determined to be 85.2, 304.4 and 38.1 kJ/mol, respectively. The diffusion of reactants via product layer could be considered as an one-dimensional diffusion below 950℃, whereas it was more likely to be a three-dimensional diffusion above 950℃, indicating that the product layer became much thicker.
  • 加载中
    1. [1]

      XIONG Wen-hui, ZHANG Wen-chao, YU Chun-pei, SHEN Rui-qi, CHENG Jia, YE Jia-hai, QIN Zhi-chun. Preparation of nanoporous CoFe2O4 and its catalytic performance during the thermal decomposition of ammonium perchlorate[J]. Acta Phys Chim Sin, 2016,32(8):2093-2100.  

    2. [2]

      MAITI S, DAS D, PAL K, LORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K, SEIKH M M, GAYEN A. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites[J]. Appl Catal A:Gen, 2019,570:73-83. doi: 10.1016/j.apcata.2018.11.011

    3. [3]

      HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2019,45(1):477-489.  

    4. [4]

      LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018,10(24):5698-5706. doi: 10.1002/cctc.201801472

    5. [5]

      WU J C, LI Y Z, YANG Y, ZHANG Q, YUN L, WU S W, ZHOU C Y, JIANG Z K, ZHAO X J. A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO[J]. J Mater Chem A, 2019,7(12):7202-7212. doi: 10.1039/C8TA11528A

    6. [6]

      DU Cheng, GAO Xiao-hui, CHEN Wei. Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction[J]. Chin J Catal, 2016,37(7):1049-1061.  

    7. [7]

      LIU Q, ZHANG X X, ZHANG B, LUO Y L, CUI G W, XIE F Y, SUN X P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod[J]. Nanoscale, 2018,10(30):14386-14389. doi: 10.1039/C8NR04524K

    8. [8]

      CUI Bai, LIN Hong, LI Jian-bao, ZHAO Xiao-chong, LI Wen-di. Visible light induced photocatalytic activity of ZnCo2O4 nanoparticles[J]. Acta Phys Chim Sin, 2011,27(10):2411-2415. doi: 10.3866/PKU.WHXB20110937

    9. [9]

      CHANDRASEKARAN S, BOWEN C, ZHANG P X, LI Z L, YUAN Q H, REN X Z, DENG L B. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting[J]. J Mater Chem A, 2018,6(24):11078-11104. doi: 10.1039/C8TA03669A

    10. [10]

      TATARCHUK T, AL-NAJAR, B, BOUOUDINA M, AHMED M A A. Catalytic and Photocatalytic Properties of Oxide Spinels:In Handbook of Ecomaterials[M]. 1nd ed. Cham:Springer International Publishing, 2018.

    11. [11]

      QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lie, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018,46(10):1210-1217. doi: 10.3969/j.issn.0253-2409.2018.10.008

    12. [12]

      XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed Eng, 2014,53(44):11886-11889. doi: 10.1002/anie.201405213

    13. [13]

      LI G J, GU C T, ZHU W B, WANG X F, YUAN X F, CUI Z J, WANG H L, GAO Z X. Hydrogen production from methanol decomposition using Cu-Al spinel catalysts[J]. J Clean Prod, 2018,183:415-423. doi: 10.1016/j.jclepro.2018.02.088

    14. [14]

      YAHIRO H, NAKAYA K, YAMAMOTO T, SAIKI K, YAMAURA H. Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction[J]. Catal Commun, 2006,7(4):228-231. doi: 10.1016/j.catcom.2005.11.004

    15. [15]

      FAUNGNAWAKIJ K, KIKUCHI R, SHIMODA N, FUKUNAGA T, EGUCHI K. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether[J]. Angew Chem Int Ed Eng, 2008,47(48):9314-9317. doi: 10.1002/anie.200802809

    16. [16]

      SHIMIZU K, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000,2(10):2435-2439. doi: 10.1039/b000943l

    17. [17]

      MATSUKATA M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988,17(5):761-764. doi: 10.1246/cl.1988.761

    18. [18]

      KIM T W, SONG M W, KOH H L, KIM K L. Surface properties and reactivity of Cu/γ-Al2O3 catalysts for NO reduction by C3H6:Influences of calcination temperatures and additives[J]. Appl Catal A:Gen, 2001,210(1/2):35-44.  

    19. [19]

      LI Guang-jun, XI Hong-juan, ZHANG Su-hong, GU Chuan-tao, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Catalytic characteristics of spinel CuM2O4(M=A1、Fe、Cr) for the stream reforming of methanol[J]. J Fuel Chem Technol, 2012,40(12):1466-1471. doi: 10.3969/j.issn.0253-2409.2012.12.009

    20. [20]

      LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017,7(21):5069-5078. doi: 10.1039/C7CY01236E

    21. [21]

      LIU Y J, QINGS J, HOU X N, FENG G, ZHANG R B, WANG X, WANG S M, GAO Z X, XIANG H W. Synthesis and structural characterization of CuAl2O4 spinel with an unusual cation distribution[J]. J Mater Appl, 2018,7(2):82-89.

    22. [22]

      VLAEV T, MARKOVSKA I G, LYUBCHEV L A. Non-isothermal kinetics of pyrolysis of rice husk[J]. Thermochim Acta, 2003,406(1/2):1-7.  

    23. [23]

      ÓRFĀO J J M, MARTINS F G. Kinetic analysis of thermogravimetric data obtained under linear temperature programming-a method based on calculations of the temperature integral by interpolation[J]. Thermochim Acta, 2002,390(1/2):195-211.  

    24. [24]

      STROHMEIER B R, LEYDEN D E, FIELD R S, HERCULES D M. Surface spectroscopic characterization of Cu/Al2O3 catalysts[J]. J Catal, 1985,94(2):514-530. doi: 10.1016/0021-9517(85)90216-7

    25. [25]

      FURUHASHI H, INAGAKI M, NAKA S. Determination of cation distribution in spinels by X-ray diffraction method[J]. J Inorg Nucl Chem, 1973,35(8):3009-3014. doi: 10.1016/0022-1902(73)80531-7

    26. [26]

      SEO J G, YOUN M H, CHUNG J S, SONG I K. Effect of calcination temperature of mesoporous nickel-alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas(LNG)[J]. J Ind Eng Chem, 2010,16(5):795-799. doi: 10.1016/j.jiec.2010.05.010

    27. [27]

      ZHANG Yu-hong, XIONG Guo-xing, SHENG Shi-shan, LIU Sheng-lin, YANG Wei-shen. Interaction of NiO with γ-Al2O3 supporter of NiO/γ-Al2O3 catalysts[J]. Acta Phys-Chim Sin, 1999,15(8):735-741. doi: 10.3866/PKU.WHXB19990813

    28. [28]

      GHARAGOZLOU M. Synthesis, characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method[J]. J Alloys Compd, 2009,486(1/2):660-665.  

    29. [29]

      CABO M, PELLICER E, ROSSINYOL E, CASTELL O, SURIÑACH S, BARÓ M D. Mesoporous NiCo2O4 spinel:influence of calcination temperature over phase purity and thermal stability[J]. Cryst Growth Des, 2009,9(11):4814-4821. doi: 10.1021/cg900648q

    30. [30]

      XIONG L L, XU Y L, ZHANG C, TAO T. Doping-coating surface modification of spinel LiMn2O4 cathode material with Al3+ for lithium-ion batteries[J]. Acta Phys Chim Sin, 2012,28(5):1177-1182. doi: 10.3866/PKU.WHXB201203092

    31. [31]

      QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun, 2018,54(86):12242-12245. doi: 10.1039/C8CC06600K

    32. [32]

      JAMES T, PADMANABHAN M, WARRIER K G K, SUGUNAN S. CuAl2O4 formation and its effect on α-Al2O3 phase evolution on calcination of metal ion doped boehmite xerogels[J]. Mater Chem Phys, 2007,103(2/3):248-254.  

    33. [33]

      KHAWAM A, FLANAGAN D R. Solid-state kinetic models:Basics and mathematical fundamentals[J]. J Phys Chem B, 2006,110(35):17315-17328. doi: 10.1021/jp062746a

    34. [34]

      CANIGLIA S, BARNA G L. Handbook of Industrial Refractories Technology: Pprinciples, Types, Properties and Applications[M]. William Andrew, 1992.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    18. [18]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    20. [20]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

Metrics
  • PDF Downloads(22)
  • Abstract views(1364)
  • HTML views(411)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return