Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis
- Corresponding author: HOU Xiao-ning, houxn@sxicc.ac.cn GAO Zhi-xian, gaozx@lnpu.edu.cn
Citation:
LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(3): 338-348.
XIONG Wen-hui, ZHANG Wen-chao, YU Chun-pei, SHEN Rui-qi, CHENG Jia, YE Jia-hai, QIN Zhi-chun. Preparation of nanoporous CoFe2O4 and its catalytic performance during the thermal decomposition of ammonium perchlorate[J]. Acta Phys Chim Sin, 2016,32(8):2093-2100.
MAITI S, DAS D, PAL K, LORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K, SEIKH M M, GAYEN A. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites[J]. Appl Catal A:Gen, 2019,570:73-83. doi: 10.1016/j.apcata.2018.11.011
HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2019,45(1):477-489.
LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018,10(24):5698-5706. doi: 10.1002/cctc.201801472
WU J C, LI Y Z, YANG Y, ZHANG Q, YUN L, WU S W, ZHOU C Y, JIANG Z K, ZHAO X J. A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO[J]. J Mater Chem A, 2019,7(12):7202-7212. doi: 10.1039/C8TA11528A
DU Cheng, GAO Xiao-hui, CHEN Wei. Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction[J]. Chin J Catal, 2016,37(7):1049-1061.
LIU Q, ZHANG X X, ZHANG B, LUO Y L, CUI G W, XIE F Y, SUN X P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod[J]. Nanoscale, 2018,10(30):14386-14389. doi: 10.1039/C8NR04524K
CUI Bai, LIN Hong, LI Jian-bao, ZHAO Xiao-chong, LI Wen-di. Visible light induced photocatalytic activity of ZnCo2O4 nanoparticles[J]. Acta Phys Chim Sin, 2011,27(10):2411-2415. doi: 10.3866/PKU.WHXB20110937
CHANDRASEKARAN S, BOWEN C, ZHANG P X, LI Z L, YUAN Q H, REN X Z, DENG L B. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting[J]. J Mater Chem A, 2018,6(24):11078-11104. doi: 10.1039/C8TA03669A
TATARCHUK T, AL-NAJAR, B, BOUOUDINA M, AHMED M A A. Catalytic and Photocatalytic Properties of Oxide Spinels:In Handbook of Ecomaterials[M]. 1nd ed. Cham:Springer International Publishing, 2018.
QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lie, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018,46(10):1210-1217. doi: 10.3969/j.issn.0253-2409.2018.10.008
XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed Eng, 2014,53(44):11886-11889. doi: 10.1002/anie.201405213
LI G J, GU C T, ZHU W B, WANG X F, YUAN X F, CUI Z J, WANG H L, GAO Z X. Hydrogen production from methanol decomposition using Cu-Al spinel catalysts[J]. J Clean Prod, 2018,183:415-423. doi: 10.1016/j.jclepro.2018.02.088
YAHIRO H, NAKAYA K, YAMAMOTO T, SAIKI K, YAMAURA H. Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction[J]. Catal Commun, 2006,7(4):228-231. doi: 10.1016/j.catcom.2005.11.004
FAUNGNAWAKIJ K, KIKUCHI R, SHIMODA N, FUKUNAGA T, EGUCHI K. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether[J]. Angew Chem Int Ed Eng, 2008,47(48):9314-9317. doi: 10.1002/anie.200802809
SHIMIZU K, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000,2(10):2435-2439. doi: 10.1039/b000943l
MATSUKATA M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988,17(5):761-764. doi: 10.1246/cl.1988.761
KIM T W, SONG M W, KOH H L, KIM K L. Surface properties and reactivity of Cu/γ-Al2O3 catalysts for NO reduction by C3H6:Influences of calcination temperatures and additives[J]. Appl Catal A:Gen, 2001,210(1/2):35-44.
LI Guang-jun, XI Hong-juan, ZHANG Su-hong, GU Chuan-tao, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Catalytic characteristics of spinel CuM2O4(M=A1、Fe、Cr) for the stream reforming of methanol[J]. J Fuel Chem Technol, 2012,40(12):1466-1471. doi: 10.3969/j.issn.0253-2409.2012.12.009
LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017,7(21):5069-5078. doi: 10.1039/C7CY01236E
LIU Y J, QINGS J, HOU X N, FENG G, ZHANG R B, WANG X, WANG S M, GAO Z X, XIANG H W. Synthesis and structural characterization of CuAl2O4 spinel with an unusual cation distribution[J]. J Mater Appl, 2018,7(2):82-89.
VLAEV T, MARKOVSKA I G, LYUBCHEV L A. Non-isothermal kinetics of pyrolysis of rice husk[J]. Thermochim Acta, 2003,406(1/2):1-7.
ÓRFĀO J J M, MARTINS F G. Kinetic analysis of thermogravimetric data obtained under linear temperature programming-a method based on calculations of the temperature integral by interpolation[J]. Thermochim Acta, 2002,390(1/2):195-211.
STROHMEIER B R, LEYDEN D E, FIELD R S, HERCULES D M. Surface spectroscopic characterization of Cu/Al2O3 catalysts[J]. J Catal, 1985,94(2):514-530. doi: 10.1016/0021-9517(85)90216-7
FURUHASHI H, INAGAKI M, NAKA S. Determination of cation distribution in spinels by X-ray diffraction method[J]. J Inorg Nucl Chem, 1973,35(8):3009-3014. doi: 10.1016/0022-1902(73)80531-7
SEO J G, YOUN M H, CHUNG J S, SONG I K. Effect of calcination temperature of mesoporous nickel-alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas(LNG)[J]. J Ind Eng Chem, 2010,16(5):795-799. doi: 10.1016/j.jiec.2010.05.010
ZHANG Yu-hong, XIONG Guo-xing, SHENG Shi-shan, LIU Sheng-lin, YANG Wei-shen. Interaction of NiO with γ-Al2O3 supporter of NiO/γ-Al2O3 catalysts[J]. Acta Phys-Chim Sin, 1999,15(8):735-741. doi: 10.3866/PKU.WHXB19990813
GHARAGOZLOU M. Synthesis, characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method[J]. J Alloys Compd, 2009,486(1/2):660-665.
CABO M, PELLICER E, ROSSINYOL E, CASTELL O, SURIÑACH S, BARÓ M D. Mesoporous NiCo2O4 spinel:influence of calcination temperature over phase purity and thermal stability[J]. Cryst Growth Des, 2009,9(11):4814-4821. doi: 10.1021/cg900648q
XIONG L L, XU Y L, ZHANG C, TAO T. Doping-coating surface modification of spinel LiMn2O4 cathode material with Al3+ for lithium-ion batteries[J]. Acta Phys Chim Sin, 2012,28(5):1177-1182. doi: 10.3866/PKU.WHXB201203092
QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun, 2018,54(86):12242-12245. doi: 10.1039/C8CC06600K
JAMES T, PADMANABHAN M, WARRIER K G K, SUGUNAN S. CuAl2O4 formation and its effect on α-Al2O3 phase evolution on calcination of metal ion doped boehmite xerogels[J]. Mater Chem Phys, 2007,103(2/3):248-254.
KHAWAM A, FLANAGAN D R. Solid-state kinetic models:Basics and mathematical fundamentals[J]. J Phys Chem B, 2006,110(35):17315-17328. doi: 10.1021/jp062746a
CANIGLIA S, BARNA G L. Handbook of Industrial Refractories Technology: Pprinciples, Types, Properties and Applications[M]. William Andrew, 1992.
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033