Citation: Mao Weiwei, Wei Xiaohong, You Jinkun, Zhang Hongyan. Progress in Electrochemical Aptamer Biosensors for the Detection of Ochratoxin A[J]. Chemistry, ;2020, 83(12): 1081-1088. shu

Progress in Electrochemical Aptamer Biosensors for the Detection of Ochratoxin A

  • Corresponding author: Zhang Hongyan, 38516098@qq.com
  • Received Date: 30 June 2020
    Accepted Date: 30 August 2020

Figures(4)

  • Ochratoxin is a kind of secondary metabolites mainly produced by aspergillus and penicillium. Ochratoxin A (OTA) is the most toxic one which can cause serious harm to human body. Moreover, it is difficult to be destroyed by conventional food processing because of its high stability. Sensitive and rapid detection of OTA is the key to early detection and treatment of OTA contamination. So far, aptamers have been employed as substitutes for antibodies to construct OTA electrochemical biosensors due to their unique advantages. The classic OTA detection methods and electrochemical aptamer biosensors (aptasensors) were introduced respectively in this paper. Besides, the latest research status of the OTA electrochemical aptasensors were summarized including the optimization of aptamer, the applications of new materials and biomagnification technologies. Meantime, the future development was prospected with the aim of providing some reference for the further research and application of OTA aptasensors.
  • 加载中
    1. [1]

      Viter R, Savchuk M, Iatsunskyi I, et al. Biosens. Bioelectron., 2018, 99: 237~243. 

    2. [2]

      Mally A, Keim-Heusler H, Amberg A, et al. Toxicol. Appl. Pharm., 2005, 206(1): 43~53. 

    3. [3]

      Aşciçelik D, Gurbuz N, Atahan Toğay V, et al. Toxicon, 2020, 180: 11~17. 

    4. [4]

      Erceg S, Mateo E, Zipancic I, et al. Toxins, 2019, 11(4): 217. 

    5. [5]

      Ałtyn I, Twaruek M. Toxins, 2020, 12(3): 182. 

    6. [6]

      Singh G, Velasquez L, Huet A C, et al. Food Addit. Contam. A, 2019, 36(10): 1567~1573. 

    7. [7]

      Schaarschmidt S, Fauhl-Hassek C. Compr. Rev. Food Sci. F., 2018, 17(3): 556~593. 

    8. [8]

      Patil U S, King S, Holleran S, et al. J. AOAC. Int., 2019, 102(6): 1689~1694. 

    9. [9]

      He Y, Yu Y, Wen X, et al. Spectrochim. Acta A, 2020, 228: 117780. 

    10. [10]

       

    11. [11]

       

    12. [12]

      Vidal J C, Bertolín J R, Ezquerra A, et al. Anal. Methods, 2017, 9(24): 3602~3611. 

    13. [13]

      Rackus D G, Shamsi M H, Wheeler A R. Chem. Soc. Rev., 2015, 44(15): 5320~5340. 

    14. [14]

      Guo X D, Wen F, Zheng N, et al. Front. Chem., 2020, 8: 195. 

    15. [15]

      Bu S J, Wang K, Li Z, et al. Analyst, 2020, 145: 4328~4334. 

    16. [16]

      Cesewski E, Johnson B N. Biosens. Bioelectron., 2020, 159: 112214. 

    17. [17]

      Li F, Zhang H, Wang Z, et al. Anal. Chem., 2014, 87(1): 274~292. 

    18. [18]

       

    19. [19]

      Beiranvand Z S, Abbasi A R, Dehdashtian S, et al. Anal. Biochem., 2017, 518: 35~45. 

    20. [20]

      Mishra R K, Hayat A, Catanante G, et al. Food Chem., 2016, 192: 799~804. 

    21. [21]

      Tang J, Huang Y, Cheng Y, et al. Microchim. Acta, 2018, 185(3): 162. 

    22. [22]

      Mejri-omrani N, Miodek A, Zribi B, et al. Anal. Chim. Acta, 2016, 920: 37~46. 

    23. [23]

      Goud K Y, Reddy K K, Satyanarayana M, et al. Microchim. Acta, 2020, 187(1): 29. 

    24. [24]

      Wei M, Xin L, Feng S, et al. Microchim. Acta, 2020, 187(2): 1~7.

    25. [25]

      Wang Y, Ning G, Bi H, et al. Electrochim. Acta, 2018, 285: 120~127. 

    26. [26]

      Somerson J, Plaxco K. Molecules, 2018, 23(4): 912. 

    27. [27]

      Chrouda A, Sbartai A, Baraket A, et al. Anal. Biochem., 2015, 488: 36~44. 

    28. [28]

      Mejri-Omrani N, Miodek A, Zribi B, et al. Anal. Chim. Acta, 2016, 920: 37~46. 

    29. [29]

      Gökçe G, Aissa S B, Nemčeková K, et al. Food Control., 2020, 115: 107271. 

    30. [30]

      Nan M, Bi Y, Xue H, et al. Toxins, 2019, 11(2): 71. 

    31. [31]

      Wei M, Zhang W. RSC Adv., 2017, 7(46): 22866~28655. 

    32. [32]

      Gu C, Yang L, Wang M, et al. Microchim. Acta, 2019, 186(6): 1~10.

    33. [33]

      Cruz-Aguado J A, Penner G. J. Agr. Food Chem., 2008, 56(22): 10456~10461. 

    34. [34]

      Wang T, Chen C, Larcher L M, et al. Biotechnol. Adv., 2019, 37(1): 28~50. 

    35. [35]

      Takahashi M, Wu X, Ho M, et al. Sci. Rep., 2016, 6(1): 33697~33697. 

    36. [36]

      Gao S, Zheng X, Jiao B, et al. Anal. Bioanal. Chem., 2016, 408(17): 4567~4573. 

    37. [37]

      Xu G, Zhao J, Liu N, et al. Nucl. Acids Res., 2019, 47(11): 5963~5972. 

    38. [38]

      Jiang C, Lan L, Yao Y, et al. Trac-Trend. Anal. Chem., 2018, 102: 236~249. 

    39. [39]

      Wei M, Feng S. Anal. Methods, 2017, 9(37): 5449~5454. 

    40. [40]

      Yu X, Song H, Huang J, et al. J. Mater. Chem. B., 2018, 6(13): 1965~1972. 

    41. [41]

      Chen J, Zhang X, Cai S, et al. Biosens. Bioelectron., 2014, 57: 226~231. 

    42. [42]

      Wang A, Liu L, Lin X, et al. Electrochim. Acta, 2017, 245: 883~892. 

    43. [43]

      Li Z, Li Y, He C, et al. J. Mater. Chem. A, 2017, 5(44): 23158~23169. 

    44. [44]

      Chen W, Yan C, Cheng L, et al. Biosens. Bioelectron., 2018, 117: 845~851. 

    45. [45]

      Li D, Zhang X, Ma Y, et al. Anal. Methods, 2018, 10(26): 3273~3279. 

    46. [46]

      Zhang J, Xu X, Qiang Y. Sens. Actuat. B, 2020, 312: 127964. 

    47. [47]

      Wen W, Huang J, Bao T, et al. Biosens. Bioelectron., 2016, 83: 142~148. 

    48. [48]

      Wei M, Zhang W. Sens. Actuat. B, 2018, 276: 1~7.

    49. [49]

      Lv L, Cui C, Liang C, et al. Food Control., 2016, 60: 296~301. 

    50. [50]

      Kaur N, Bharti A, Batra S, et al. Microchem. J., 2019, 144: 102~109. 

    51. [51]

      Abnous K, Danesh N M, Alibolandi M, et al. Microchim. Acta, 2017, 184(4): 1151~1159. 

    52. [52]

      Zhu X, Kou F, Xu H, et al. Sens. Actuat. B, 2018, 270: 263~269. 

    53. [53]

      Zhou X, Li X Y, Lu K. Science, 2018, 360(6388): 526~530. 

    54. [54]

      Gupta B D, Pathak A, Semwal V. Sensors, 2019, 19(16): 3536. 

    55. [55]

      Wei M, Zhang W. Chem. Cent. J., 2018, 12(1): 45. 

    56. [56]

      Yang Y, Zhou Y, Xing Y, et al. Talanta, 2019, 199: 310~316. 

    57. [57]

      Gao J, Chen Z, Mao L, et al. Talanta, 2019, 199: 178~183. 

    58. [58]

      Zhang X, Wang Z, Xie H, et al. Toxins, 2018, 10(8): 317. 

    59. [59]

       

    60. [60]

      Peng K, Xie P, Yang Z, et al. Biosens. Bioelectron., 2018, 102: 282~287. 

    61. [61]

      Zhu C, Liu D, Li Y, et al. Curr. Opin. Electrochem., 2019, 17: 47~55. 

    62. [62]

      Zhu C, Liu D, Li Y, et al. Biosens. Bioelectron., 2020, 150: 111814. 

    63. [63]

      Lv L, Li D, Cui C, et al. Biosens. Bioelectron., 2017, 87: 136~141. 

    64. [64]

      Liu M, Li X, Li B, et al. Microchim. Acta, 2020, 187(1): 1~8. 

    65. [65]

      Suea-Ngam A, Howes P D, Stanley C E, et al. ACS Sensors, 2019, 4(6): 1560~1568. 

    66. [66]

      Wang Y, Ning G, Wu Y, et al. Biosens. Bioelectron., 2019, 124: 82~88.

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    4. [4]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    7. [7]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    8. [8]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    11. [11]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    12. [12]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    18. [18]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    19. [19]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    20. [20]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

Metrics
  • PDF Downloads(8)
  • Abstract views(1258)
  • HTML views(325)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return