Citation: ZHANG Xi, WU Zhi-wei, ZHU Hua-qing, LI Shi-ying, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 697-706. shu

Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation

  • Corresponding author: WU Zhi-wei, wuzhiwei@sxicc.ac.cn QIN Zhang-feng, qzhf@sxicc.ac.cn
  • Received Date: 24 February 2017
    Revised Date: 26 April 2017

    Fund Project: Shanxi Province Science and Technology Research Project MQ2014-10the National Natural Science Foundation of China 21403268Shanxi Province Science and Technology Research Project MQ2014-11Strategic Priority Research Program of the Chinese Academy of Sciences XDA07060300

Figures(9)

  • In this work, a flower-like CeTiOx composite oxide, predominantly exposing CeO2{100} plane, was synthesized by a simple hydrothermal method. The SEM and XRD results revealed the growth mechanism of CeTiOx composite oxide can be divided into two stages, including the rapid growth of amorphous and the following crystallization. The ratio of Ce/Ti, KOH concentration, crystallization time and calcination temperature are the key factors for the synthesis of the flower-like CeTiOx composite oxide. Au catalyst supported on this composite oxide exhibited superior activity for CO oxidation at room temperature. The TEM and H2-TPR results suggested that the exposed CeO2{100} plane and the strong interaction between Au and CeTiOx composite oxide are responsible for the high activity.
  • 加载中
    1. [1]

      SUN Y A, SHEN Y N, JIA M L. Evolution of gold species in an Au/CeO2 catalyst and its impact on activity for CO oxidation[J]. Chem Res Chin Univ, 2010,26(3):453-459.

    2. [2]

      HARUTA M, YAMADA N, KOBAYASHI T. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989,115(2):301-309. doi: 10.1016/0021-9517(89)90034-1

    3. [3]

      HARUTA M, TSUBOTA S, KOBAYASHI T. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4[J]. J Catal, 1993,144(1):175-192. doi: 10.1006/jcat.1993.1322

    4. [4]

      PANDIAN L, LAURENT D, VINCENT R. Total oxidation of propene over Au/CeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment[J]. Appl Catal B: Environ, 2010,96(1/2):117-125.

    5. [5]

      MARIA P C, ALESSANDRO L, ANNA M V. Metal-support and preparation influence on the structural and electronic properties of gold catalysts[J]. Appl Catal A: Gen, 2006,302(2):309-316. doi: 10.1016/j.apcata.2006.02.005

    6. [6]

      LI Q, ZHANG Y H, CHEN G X. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity[J]. J Catal, 2010,273(2):167-176. doi: 10.1016/j.jcat.2010.05.008

    7. [7]

      LI S H, ZHU H Q, QIN Z F. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B: Environ, 2014,144:498-506. doi: 10.1016/j.apcatb.2013.07.049

    8. [8]

      QIAN K, HUANG W X, JIANG Z Q. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal, 2007,248(1):137-141. doi: 10.1016/j.jcat.2007.02.010

    9. [9]

      WANG Z H, FU H F, TIAN Z W. Strong metal-support interaction in novel core-shell Au-CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation[J]. Nanoscale, 2016,8(11):5865-5872. doi: 10.1039/C5NR06929G

    10. [10]

      ALESSANDRO L, LEONARDA F L, GABRIELLA D C. Structure and the metal support interaction of the Au/Mn oxide catalysts[J]. Chem Mater, 2010,22(13):3952-3960. doi: 10.1021/cm100697b

    11. [11]

      LIU X J, LIU J F, CHANG Z. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation[J]. Catal Commun, 2011,12(6):530-534. doi: 10.1016/j.catcom.2010.11.016

    12. [12]

      LIN S J, SUA G J, ZHENG M H. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Appl Catal B: Environ, 2012,123/124:440-447. doi: 10.1016/j.apcatb.2012.05.011

    13. [13]

      ZHENG Y H, CHENG Y, WANG Y S. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance[J]. J Phys Chem B, 2006,110(7):3093-3097. doi: 10.1021/jp056617q

    14. [14]

      XIE X W, LI Y, LIU Z Q. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009,458(7239):746-749. doi: 10.1038/nature07877

    15. [15]

      LIU L J, JIANG Y Q, ZHAO H L. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light[J]. ACS Catal, 2016,6(2):1097-1108.

    16. [16]

      WANG G H, LI W C, JIA K M. Shape and size controlled alpha-Fe2O3 nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance[J]. Appl Catal A: Gen, 2009,364(1/2):42-47.

    17. [17]

      ZIOLKOWSKI J, BARBAUX Y. Identification of sites active in oxidation of butene to butadiene and CO2 on CO3O4 in terms of the crystallochemical model of solid surface[J]. J Mol Catal, 1991,67(2):199-215. doi: 10.1016/0304-5102(91)85047-6

    18. [18]

      TTHX T S, FRANCESCO C, ZHANG X Q. Structure-activity map of ceria nanoparticles, nanocubes, and mesoporous architectures[J]. Chem Mater, 2016,28(20):7287-7295. doi: 10.1021/acs.chemmater.6b02536

    19. [19]

      HAUNG W X. Oxide nanocrystal model catalysts[J]. Acc Chem Res, 2016,49(3):520-527. doi: 10.1021/acs.accounts.5b00537

    20. [20]

      TA N, LIU J Y, SANTHOSH C. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring[J]. J Am Chem Soc, 2012,134(51):20585-20588. doi: 10.1021/ja310341j

    21. [21]

      TIZIANO M, MICHELE M, MATTEO M. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem Rev, 2016,116(10):5987-6041. doi: 10.1021/acs.chemrev.5b00603

    22. [22]

      HU Z, LIU X F, MENG D M. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. Acs Catal, 2016,6(4):2265-2279. doi: 10.1021/acscatal.5b02617

    23. [23]

      SUN C W, LI H, CHEN L Q. Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction[J]. J Phys Chem Solids, 2007,68(9):1785-1790. doi: 10.1016/j.jpcs.2007.05.005

    24. [24]

      LIU W, FENG L U, ZHANG C. A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor[J]. J Mater Chem A, 2013,1(23):6942-6948. doi: 10.1039/c3ta10487g

    25. [25]

      ZHOU K B, WANG X, SUN X M. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J Catal, 2005,229(1):206-212. doi: 10.1016/j.jcat.2004.11.004

    26. [26]

      MAI H X, SUN L D, ZHANG Y W. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B, 2005,109(51):24380-24385. doi: 10.1021/jp055584b

    27. [27]

      SUN C W, SUN J, XIAO G L. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres[J]. J Phys Chem B, 2007,110(27):13445-13452.  

    28. [28]

      PUTLA S, BAITHY M, PADIGAPATI S R. Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity[J]. Appl Catal B: Environ, 2014,144:900-908. doi: 10.1016/j.apcatb.2013.08.035

    29. [29]

      PENN R L. Kinetics of oriented aggregation[J]. J Phys Chem B, 2004,108(34):12707-12712. doi: 10.1021/jp036490+

    30. [30]

      CHEN Y, WANG Y S, ZHEGN Y H. Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation[J]. J Phys Chem B, 2005,109(23):11548-11551. doi: 10.1021/jp050641m

    31. [31]

      HUANG X S, SUN H, WANG L C. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ, 2009,90(1/2):224-232.  

    32. [32]

      ZHONG L S, HU J S, CAO A M. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007,19(7):1648-1655. doi: 10.1021/cm062471b

    33. [33]

      QI J, CHEN J, LI G D. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation[J]. Energy Environ Sci, 2012,5(10)8937. doi: 10.1039/c2ee22600f

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    12. [12]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(3)
  • Abstract views(1711)
  • HTML views(359)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return