Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation
- Corresponding author: WU Zhi-wei, wuzhiwei@sxicc.ac.cn QIN Zhang-feng, qzhf@sxicc.ac.cn
Citation:
ZHANG Xi, WU Zhi-wei, ZHU Hua-qing, LI Shi-ying, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(6): 697-706.
SUN Y A, SHEN Y N, JIA M L. Evolution of gold species in an Au/CeO2 catalyst and its impact on activity for CO oxidation[J]. Chem Res Chin Univ, 2010,26(3):453-459.
HARUTA M, YAMADA N, KOBAYASHI T. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989,115(2):301-309. doi: 10.1016/0021-9517(89)90034-1
HARUTA M, TSUBOTA S, KOBAYASHI T. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4[J]. J Catal, 1993,144(1):175-192. doi: 10.1006/jcat.1993.1322
PANDIAN L, LAURENT D, VINCENT R. Total oxidation of propene over Au/CeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment[J]. Appl Catal B: Environ, 2010,96(1/2):117-125.
MARIA P C, ALESSANDRO L, ANNA M V. Metal-support and preparation influence on the structural and electronic properties of gold catalysts[J]. Appl Catal A: Gen, 2006,302(2):309-316. doi: 10.1016/j.apcata.2006.02.005
LI Q, ZHANG Y H, CHEN G X. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity[J]. J Catal, 2010,273(2):167-176. doi: 10.1016/j.jcat.2010.05.008
LI S H, ZHU H Q, QIN Z F. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B: Environ, 2014,144:498-506. doi: 10.1016/j.apcatb.2013.07.049
QIAN K, HUANG W X, JIANG Z Q. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal, 2007,248(1):137-141. doi: 10.1016/j.jcat.2007.02.010
WANG Z H, FU H F, TIAN Z W. Strong metal-support interaction in novel core-shell Au-CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation[J]. Nanoscale, 2016,8(11):5865-5872. doi: 10.1039/C5NR06929G
ALESSANDRO L, LEONARDA F L, GABRIELLA D C. Structure and the metal support interaction of the Au/Mn oxide catalysts[J]. Chem Mater, 2010,22(13):3952-3960. doi: 10.1021/cm100697b
LIU X J, LIU J F, CHANG Z. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation[J]. Catal Commun, 2011,12(6):530-534. doi: 10.1016/j.catcom.2010.11.016
LIN S J, SUA G J, ZHENG M H. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Appl Catal B: Environ, 2012,123/124:440-447. doi: 10.1016/j.apcatb.2012.05.011
ZHENG Y H, CHENG Y, WANG Y S. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance[J]. J Phys Chem B, 2006,110(7):3093-3097. doi: 10.1021/jp056617q
XIE X W, LI Y, LIU Z Q. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009,458(7239):746-749. doi: 10.1038/nature07877
LIU L J, JIANG Y Q, ZHAO H L. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light[J]. ACS Catal, 2016,6(2):1097-1108.
WANG G H, LI W C, JIA K M. Shape and size controlled alpha-Fe2O3 nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance[J]. Appl Catal A: Gen, 2009,364(1/2):42-47.
ZIOLKOWSKI J, BARBAUX Y. Identification of sites active in oxidation of butene to butadiene and CO2 on CO3O4 in terms of the crystallochemical model of solid surface[J]. J Mol Catal, 1991,67(2):199-215. doi: 10.1016/0304-5102(91)85047-6
TTHX T S, FRANCESCO C, ZHANG X Q. Structure-activity map of ceria nanoparticles, nanocubes, and mesoporous architectures[J]. Chem Mater, 2016,28(20):7287-7295. doi: 10.1021/acs.chemmater.6b02536
HAUNG W X. Oxide nanocrystal model catalysts[J]. Acc Chem Res, 2016,49(3):520-527. doi: 10.1021/acs.accounts.5b00537
TA N, LIU J Y, SANTHOSH C. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring[J]. J Am Chem Soc, 2012,134(51):20585-20588. doi: 10.1021/ja310341j
TIZIANO M, MICHELE M, MATTEO M. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem Rev, 2016,116(10):5987-6041. doi: 10.1021/acs.chemrev.5b00603
HU Z, LIU X F, MENG D M. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. Acs Catal, 2016,6(4):2265-2279. doi: 10.1021/acscatal.5b02617
SUN C W, LI H, CHEN L Q. Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction[J]. J Phys Chem Solids, 2007,68(9):1785-1790. doi: 10.1016/j.jpcs.2007.05.005
LIU W, FENG L U, ZHANG C. A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor[J]. J Mater Chem A, 2013,1(23):6942-6948. doi: 10.1039/c3ta10487g
ZHOU K B, WANG X, SUN X M. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J Catal, 2005,229(1):206-212. doi: 10.1016/j.jcat.2004.11.004
MAI H X, SUN L D, ZHANG Y W. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B, 2005,109(51):24380-24385. doi: 10.1021/jp055584b
SUN C W, SUN J, XIAO G L. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres[J]. J Phys Chem B, 2007,110(27):13445-13452.
PUTLA S, BAITHY M, PADIGAPATI S R. Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity[J]. Appl Catal B: Environ, 2014,144:900-908. doi: 10.1016/j.apcatb.2013.08.035
PENN R L. Kinetics of oriented aggregation[J]. J Phys Chem B, 2004,108(34):12707-12712. doi: 10.1021/jp036490+
CHEN Y, WANG Y S, ZHEGN Y H. Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation[J]. J Phys Chem B, 2005,109(23):11548-11551. doi: 10.1021/jp050641m
HUANG X S, SUN H, WANG L C. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ, 2009,90(1/2):224-232.
ZHONG L S, HU J S, CAO A M. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007,19(7):1648-1655. doi: 10.1021/cm062471b
QI J, CHEN J, LI G D. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation[J]. Energy Environ Sci, 2012,5(10)8937. doi: 10.1039/c2ee22600f
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Xiaofang Li , Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067