Citation: XU Cheng-zhi, ZHENG Mei-qin, CHEN Keng, HU Hui, CHEN Xiao-hui. CeOx doping on a TiO2-SiO2 supporter enhances Ag based adsorptive desulfurization for diesel[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 943-953. shu

CeOx doping on a TiO2-SiO2 supporter enhances Ag based adsorptive desulfurization for diesel

  • Corresponding author: CHEN Xiao-hui, chenxhfzu@fzu.edu.cn
  • Received Date: 8 March 2016
    Revised Date: 20 May 2016

    Fund Project: 国家自然科学基金资助 21376055

Figures(10)

  • In this work, the impact of CeOx doping on a TiO2-SiO2 supporter on the Ag based adsorptive desulfurization for Chinese standard diesel was studied. The dispersion and valence states of Ce, Ti and Ag species were characterized, and the impact of Ce doping was investigated. The results indicated that Ce species and Ti species were dispersed evenly on the surface of SiO2 via a novel co-impregnation method. Following CeOx doping, the Ag species were in the form of oxides (about 5nm) instead of metallic Ag particles (about 35nm), which is due to the large amount of coordinative unsaturated sites provided by the interaction between CeOx and TiO2, as well as the oxidation-reduction property of CeOx. The Ag in the active oxide state (Ag2O2) and dispersed evenly on the supporter could interact with sulfur compounds more favorably, and therefore showed a good performance in the adsorptive desulfurization. In both static batch and dynamic breakthrough desulfurization tests, Ag-CeOx/TiO2-SiO2 was proved to be a more efficient adsorbent compared with Ag-TiO2-SiO2. It was found that the desulfurization performance of Ag-TiO2-SiO2 exhibited an excellent improvement (22.5%) after being doped with CeOx. In the static equilibrium tests, the equilibrium sulfur capacity of Ag-CeOx/TiO2-SiO2 was up to 5.38mg/g for CN-II diesel (sulfur content 952.9mg/kg) and the sulfur content of the CN-IV diesel (sulfur content 39.0mg/kg) after desulfurization was less than 10mg/kg, which could meet the CN-V standard.
  • 加载中
    1. [1]

      WU L, XIAO J, WU Y, XIAN S, MIAO G, WANG H, LI Z. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels[J]. Langmuir, 2014,30(4):1080-1088. doi: 10.1021/la404540j

    2. [2]

      PALOMINO J M, TRAN D T, HAUSER J L, DONG H, OLIVER S R. Mesoporous silica nanoparticles for high capacity adsorptive desulfurization[J]. J Mater Chem, 2014,2(36):14890-14895. doi: 10.1039/C4TA02570A

    3. [3]

      XU X, ZHANG S, LI P, SHEN Y. Adsorptive desulfurization of liquid Jet-A fuel at ambient conditions with an improved adsorbent for on-board fuel treatment for SOFC applications[J]. Fuel Process Technol, 2014,124:140-146. doi: 10.1016/j.fuproc.2014.03.001

    4. [4]

      XIAO J, WANG X, CHEN Y, FUJⅡ M, SONG C. Ultra-deep adsorptive desulfurization of light-irradiated diesel fuel over supported TiO2-CeO2 adsorbents[J]. Ind Eng Chem Res, 2013,52(45):15746-15755. doi: 10.1021/ie402724q

    5. [5]

      HUSSAIN A S, TATARCHUK B J. Adsorptive desulfurization of jet and diesel fuels using Ag/TiOx-Al2O3 and Ag/TiOx-SiO2 adsorbents[J]. Fuel, 2013,107:465-473. doi: 10.1016/j.fuel.2012.11.030

    6. [6]

      QIN Y, MO Z, YU W, DONG S, DUAN L, GAO X, SONG L. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites:Comparison of CeY obtained by liquid-, and solid-state ion exchange[J]. Appl Surf Sci, 2014,292:5-15. doi: 10.1016/j.apsusc.2013.11.036

    7. [7]

      KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks:Remarkable adsorbents for adsorptive desulfurization[J]. Chem Eur J, 2014,20(2):376-380. doi: 10.1002/chem.v20.2

    8. [8]

      HUSSAIN A S, TATARCHUK B J. Mechanism of hydrocarbon fuel desulfurization using Ag/TiO2-Al2O3 adsorbent[J]. Fuel Process Technol, 2014,126:233-242. doi: 10.1016/j.fuproc.2014.05.006

    9. [9]

      HUSSAIN A S, MCKEE M L, HEINZEL J M, SUN X, TATARCHUK B J. Density functional theory study of organosulfur selective adsorption on Ag-TiO2 adsorbents[J]. J Phys Chem C, 2014,118(27):14938-14947. doi: 10.1021/jp503097y

    10. [10]

      LIU B, ZHU Y, LIU S, MAO J. Adsorption equilibrium of thiophenic sulfur compounds on the Cu-BTC metal-organic framework[J]. J Chem Eng Data, 2012,57(4):1326-1330. doi: 10.1021/je300130s

    11. [11]

      YANG R T, HERNANDEZ-MALDONADO A J, YANG F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003,301(5629):79-81. doi: 10.1126/science.1085088

    12. [12]

      HE G, SUN L, SONG X, LIU X, YIN Y, WANG Y. Adjusting host properties to promote cuprous chloride dispersion and adsorptive desulfurization sites formation on SBA-15[J]. Energy Fuels, 2011,25(8):3506-3513. doi: 10.1021/ef200723m

    13. [13]

      XU X, ZHANG S, LI P, SHEN Y. Equilibrium and kinetics of Jet-A fuel desulfurization by selective adsorption at room temperatures[J]. Fuel, 2013,111:172-179. doi: 10.1016/j.fuel.2013.04.068

    14. [14]

      MA X, SPRAGUE M, SONG C. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications[J]. Ind Eng Chem Res, 2005,44(15):5768-5775. doi: 10.1021/ie0492810

    15. [15]

      VELU S, MA X, SONG C, NAMAZIAN M, SETHURAMAN S, VENKATARAMAN G. Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-based adsorbent for micro solid oxide fuel cells[J]. Energy Fuels, 2005,19(3):1116-1125. doi: 10.1021/ef049800b

    16. [16]

      SHEN Y, XU X, LI P. A novel potential adsorbent for ultra deep desulfurization of jet fuels at room temperature[J]. RSC Adv, 2012,2(15):6155-6160. doi: 10.1039/c2ra20224g

    17. [17]

      TRIANTAFYLLIDIS K S, DELIYANNI E A. Desulfurization of diesel fuels:Adsorption of 4, 6-DMDBT on different origin and surface chemistry nanoporous activated carbons[J]. Chem Eng J, 2014,236:406-414. doi: 10.1016/j.cej.2013.09.099

    18. [18]

      WANG L, YANG R T, SUN C L. Graphene and other carbon sorbents for selective adsorption of thiophene from liquid fuel[J]. AlChE J, 2013,59(1):29-32. doi: 10.1002/aic.v59.1

    19. [19]

      BALTZOPOULOU P, KALLIS K X, KARAGIANNAKIS G, KONSTANDOPOULOS A G. Diesel fuel desulfurization via adsorption with the aid of activated carbon:Laboratory-and pilot-scale studies[J]. Energy Fuels, 2015,29(9):5640-5648. doi: 10.1021/acs.energyfuels.5b01133

    20. [20]

      XU X, ZHANG S, LI P, SHEN Y. Desulfurization of Jet-A fuel in a fixed-bed reactor at room temperature and ambient pressure using a novel selective adsorbent[J]. Fuel, 2014,117:499-508. doi: 10.1016/j.fuel.2013.09.074

    21. [21]

      GUO J, JANIK M J, SONG C. Density functional theory study on the role of ceria addition in TixCe1-xO2 adsorbents for thiophene adsorption[J]. J Phys Chem C, 2012,116(5):3457-3466. doi: 10.1021/jp2063996

    22. [22]

      TIAN F, SHEN Q, FU Z, WU Y, JIA C. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y[J]. Fuel Process Technol, 2014,128:176-182. doi: 10.1016/j.fuproc.2014.07.018

    23. [23]

      WANG Y, YANG R T, HEINZEL J M. Desulfurization of jet fuel byπ-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials[J]. Chem Eng Sci, 2008,63(2):356-365. doi: 10.1016/j.ces.2007.09.002

    24. [24]

      HERNANDEZ-MALDONADO A J, YANG R T. Desulfurization of commercial liquid fuels by selective adsorption viaπ-complexation with Cu (I)-Y zeolite[J]. Ind Eng Chem Res, 2003,42(13):3103-3110. doi: 10.1021/ie0301132

    25. [25]

      PERALTA D, CHAPLAIS G, SIMON-MASSERON A, BARTHELET K, PIRNGRUBER G D. Metal-organic framework materials for desulfurization by adsorption[J]. Energy Fuels, 2012,26(8):4953-4960. doi: 10.1021/ef300762z

    26. [26]

      LIU X, WANG J, LI Q, JIANG S, ZHANG T, JI S. Synthesis of rare earth metal-organic frameworks (Ln-MOFs) and their properties of adsorption desulfurization[J]. J Rare Earths, 2014,32(2):189-194. doi: 10.1016/S1002-0721(14)60050-8

    27. [27]

      NAIR S, TATARCHUK B J. Supported silver adsorbents for selective removal of sulfur species from hydrocarbon fuels[J]. Fuel, 2010,89(11):3218-3225. doi: 10.1016/j.fuel.2010.05.006

    28. [28]

      WATANABE S, MA X, SONG C. Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD[J]. J Phys Chem C, 2009,113(32):14249-14257. doi: 10.1021/jp8110309

    29. [29]

      SCIRE S, MINICO S, CRISAFULLI C, SATRIANO C, PISTONE A. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts[J]. Appl Catal B:Environ, 2003,40(1):43-49. doi: 10.1016/S0926-3373(02)00127-3

    30. [30]

      ZHANG Y, ANDERSSON S, MUHAMMED M. Nanophase catalytic oxides:I. Synthesis of doped cerium oxides as oxygen storage promoters[J]. Appl Catal B:Environ, 1995,6(4):325-337. doi: 10.1016/0926-3373(95)00041-0

    31. [31]

      XIAO J, WANG X, FUJⅡ M, YANG Q, SONG C. A novel approach for ultra-deep adsorptive desulfurization of diesel fuel over TiO2-CeO2/MCM-48 under ambient conditions[J]. AlChE J, 2013,59(5):1441-1445. doi: 10.1002/aic.14085

    32. [32]

      GONBEAU D, GUIMON C, PFISTER-GUILLOUZO G, LEVASSEUR A, MEUNIER G, DORMOY R. XPS study of thin films of titanium oxysulfides[J]. Surf Sci, 1991,254(1):81-89.

    33. [33]

      ROMEO M, BAK K, FALLAH J E, NORMAND F L, HILAIRE L. XPS study of the reduction of cerium dioxide[J]. Surf Interface Anal, 1993,20(6):508-512. doi: 10.1002/(ISSN)1096-9918

    34. [34]

      GROSS T, RAMM M, SONNTAG H, UNGER W, WEIJERS H M, ADEM E H. An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference[J]. Surf Interface Anal, 1992,18(1):59-64. doi: 10.1002/(ISSN)1096-9918

    35. [35]

      NAGPURE I, PITALE S S, TSHABALALA K, KUMAR V, NTWAEABORWA O, TERBLANS J, SWART H. Luminescence response and CL degradation of combustion synthesized spherical SiO2:Ce nanophosphor[J]. Mater Res Bull, 2011,46(12):2359-2366. doi: 10.1016/j.materresbull.2011.08.051

    36. [36]

      LARACHI F, PIERRE J, ADNOT A, BERNIS A. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts[J]. Appl Surf Sci, 2002,195(1):236-250.

    37. [37]

      SAMOKHVALOV A, NAIR S, DUIN E C, TATARCHUK B J. Surface characterization of Ag/titania adsorbents[J]. Appl Surf Sci, 2010,256(11):3647-3652. doi: 10.1016/j.apsusc.2010.01.002

  • 加载中
    1. [1]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    2. [2]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    3. [3]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    4. [4]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    5. [5]

      Bowen XuJiahao ChenLulu CuiXinyue LiYuan XueSheng Han . Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers: A low dosage and high-efficiency cold flow improver for diesel fuel. Chinese Chemical Letters, 2025, 36(5): 110196-. doi: 10.1016/j.cclet.2024.110196

    6. [6]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    7. [7]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    8. [8]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    9. [9]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    10. [10]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    11. [11]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    12. [12]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    13. [13]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    14. [14]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    15. [15]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    16. [16]

      Yepei Li Kun Lin . Face-sharing strategy helps achieve lithium superionic conductivity in face-centred cubic oxides. Chinese Journal of Structural Chemistry, 2025, 44(4): 100449-100449. doi: 10.1016/j.cjsc.2024.100449

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    20. [20]

      Xiaohan Zhang Bo Xiao . Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations. Chinese Journal of Structural Chemistry, 2025, 44(2): 100419-100419. doi: 10.1016/j.cjsc.2024.100419

Metrics
  • PDF Downloads(0)
  • Abstract views(2624)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return