Citation: ZHU Yan-tao, LÜ Gang, SONG Chong-lin, LI Bo, CHEN Ke. Catalytic oxidation of soot over monovalent copper modified ZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 106-112. shu

Catalytic oxidation of soot over monovalent copper modified ZSM-5

  • Corresponding author: LÜ Gang, lvg@tju.edu.cn
  • Received Date: 24 June 2016
    Revised Date: 14 November 2016

    Fund Project: the Major State Basic Research Development Program of China 2013CB228506the Major State Basic Research Development Program of China 973 programNational Natural Science Foundation of China 51476115the Tianjin Research Program of Application Foundation and Advanced Technology 13JCZDJC35800

Figures(8)

  • ZSM-5 zeolites were modified with different contents of monovalent copper by solid-state ion exchange method and used as the catalysts in soot oxidation; the effect of monovalent copper content on the catalytic performance was investigated through extensive characterization. The results indicate that high content of monovalent copper can be loaded on ZSM-5 zeolite by the solid-state ion exchange method, whereas has little detriment to the original micro-structure of ZSM-5. With the increase of copper content in catalyst, the reduction peaks at low temperature and high temperature both shift to lower temperature, while the area of low temperature reduction peak is increased. The catalytic activity of Cu-modified zeolite in soot oxidation decreases after an initial increase with the increase of Cu content. When the Cu loading exceeds 11%, the dispersion of copper species deteriorates, accompanying with a decrease in the catalytic activity for soot oxidation. Meanwhile, the addition of NO to the feed (O2/He) can enhance the soot oxidation.
  • 加载中
    1. [1]

      ALKEMADE U G, SCHUMANN B. Engines and exhaust after treatment systems for future automotive applications[J]. Solid State Ion, 2006,177(26/32):2291-2296.  

    2. [2]

      HOHL Y. Retrofit kit to reduce NOx and PM emissions from diesel engines using a low-pressure EGR and a DPF-system with FBC and throttling for active regeneration without production of secondary emissions[J]. Int J Bilingualism, 2015,19(293):627-645.

    3. [3]

      FAYAD M, HERREROS J M, MARTOS F J, TSOLAKIS A. The role of alternative fuels on pm characteristics and influence of the diesel oxidation catalyst[J]. Environ Sci Technol, 2015,49(19):11967-11973. doi: 10.1021/acs.est.5b02447

    4. [4]

      XU J F, LIU J, ZHAO Z, XU C M, ZHENG J X, DUAN A J, JIANG G Y. Easy synthesis of three-dimensionally ordered microporous La1-xKxCoO3 catalysts and their high activities for the catalytic combustion of soot[J]. J Catal, 2011,282(1):1-12. doi: 10.1016/j.jcat.2011.03.024

    5. [5]

      SEO P W, CHO S P, HONG S H, HONG S C. The influence of lattice oxygen in titania on selective catalytic reduction in the low temperature region[J]. Appl Catal A:Gen, 2010,380(1):21-27.  

    6. [6]

      OLSSON L, WIJAYANTI K, LEISTNER K, KUMAR A, JOSHI S Y, KAMASAMUDRAM K, NEAL W C, ALEKSEY Y. A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR[J]. Appl Catal B:Environ, 2015,183:394-406.  

    7. [7]

      MA A J, WANG S Z, CHENG L, XIAN H, DING Q, GUO L, MENG M, TAN Y S, TSUBAKI N, ZHANG J, ZHENG L D, LI X G. Effects of Fe dopants and residual carbonates on the catalytic activities of the perovskite-type La 0.7 Sr0.3 Co1-xFexO3, NOx, storage catalyst[J]. Appl Catal B:Environ, 2014,146(5):24-34.

    8. [8]

      IWASAKI S, MIZUTANI T, MIYAIRI Y, YUUKI K, MAKINO M. New design concept for diesel particulate filter[J]. SAE Int J Engines, 2011,4(1):527-536. doi: 10.4271/2011-01-0603

    9. [9]

      YOSHIDA K, MAKINO S, SUMIYA S. Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust[J]. SAE Paper, 198919892046.  

    10. [10]

      YIN F, JI S, WU P, ZHAO F, LI C. , Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane[J]. J Catal, 2008,257(1):108-116. doi: 10.1016/j.jcat.2008.04.010

    11. [11]

      FIERRO G, MORETTI G, FERRARIS G, ANDREOZZI G B. A Mössbauer and structural investigation of Fe-ZSM-5 catalysts:Influence of Fe oxide nanoparticles size on the catalyticbehaviour for the NO-SCR by C3H8[J]. Appl Catal B:Environ, 2011,102(1):215-223.

    12. [12]

      BIN F, SONG C L, LV G, SONG J O, WANG K P, LI X D. Soot low-temperature combustion on Cu-Zr/ZSM-5 catalysts in O2/He and NO/O2/He atmospheres[J]. Proc Combust Inst, 2013,34(2):2303-2311. doi: 10.1016/j.proci.2012.07.075

    13. [13]

      SCHWIDDER M, SANTHOSH K M, BRVCKNER A, GRVERT W. Active sites for NO reduction over Fe-ZSM-5 catalysts[J]. Chem Commun, 2005,6(6):805-807.  

    14. [14]

      SONG Z X, ZHANG Q L, NING P, LIU X, ZHANG J H, WANG Y C, XU L S, HUANG Z Z. Effect of copper precursors on the catalytic activity of Cu/ZSM-5 catalysts for selective catalytic reduction of NO by NH3[J]. Res Chem Intermed, 2016,42(10):7429-7445. doi: 10.1007/s11164-016-2545-4

    15. [15]

      YUAN E, ZHANG K, LU G, MO Z, TANG Z. Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of NOx, with NH3[J]. J Ind Eng Chem, 2016,42:142-148. doi: 10.1016/j.jiec.2016.07.030

    16. [16]

      KANG W, CHOI B, KIM H. Characteristics of the simultaneous removal of PM and NOx, using CuNb-ZSM-5 coated on diesel particulate filter[J]. J Ind Eng Chem, 2013,19(4):1406-1412. doi: 10.1016/j.jiec.2013.01.004

    17. [17]

      TRONCONI E, NOVA I, MARCHITTI F, KOLTSAKIS G, KARAMITROS D, MALETIC B, MARKERT N, CHATTERJEE D, HEHLE M. Interaction of NOx, reduction and soot oxidation in a DPF with Cu-zeolite SCR coating[J]. Emis Control Sci Technol, 2015,1(2):134-151. doi: 10.1007/s40825-015-0014-y

    18. [18]

      SHAKYA B M, HAROLD M P, BALAKOTAIAH V. Simulations and optimization of combined Fe-and Cu-zeolite SCR monolith catalysts[J]. Chem Eng J, 2015,278:374-384. doi: 10.1016/j.cej.2014.11.029

    19. [19]

      HUANG L H, ZHANG F B, WANG N, CHEN R H, ANDREW T H. Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of ethanol[J]. Int J Hydrogen Energy, 2012,37(2):1272-1279. doi: 10.1016/j.ijhydene.2011.10.005

    20. [20]

      URQUIETAGONZÁLEZ , MARTINS E A, PEGUIN L, BATISTA RPS S M. Identification of extra-framework species on Fe/ZSM-5 and Cu/ZSM-5 catalysts typical microporous molecular sieves with zeolitic structure[J]. Mater Res, 2002,5(3):321-327. doi: 10.1590/S1516-14392002000300017

    21. [21]

      SCHWIDDER M, SANTHOSH K M, BRVCKNER A, GRVNERT W. Active sites for NO reduction over Fe-ZSM-5 catalysts[J]. Chem Commun, 2015,6:805-807.  

    22. [22]

      PANG L, FAN C, SHAO L N, SONG K P, YI J X, CAI X, WANG J, KANG M, LI T. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chem Eng J, 2014,25(7):394-401.  

    23. [23]

      DEKA U, LEZCANOGONZALEZ I, WECKHUYSEN B M, BEALE A M. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx[J]. ACS Catal, 2013,3(3):413-427. doi: 10.1021/cs300794s

    24. [24]

      ABOUL-GHEIT A K, ABOUL-FOTOUH S M, ABDEL-HAMID S M, ABOUL-GHEIT N A K. Hydroconversion of cyclohexene using H-ZSM-5 zeolite catalysts promoted via hydrochlorination and/or platinum incorporation[J]. J Mol Catal A:Chem, 2006,245(1):167-177.  

    25. [25]

      GUILLÉN-HURTADO N, BUENO-LÓPEZ A, GARCÍA-GARCÍA A. Catalytic performances of ceria and ceria-zirconia materials for the combustion of diesel soot under NOx/O2, and O2. Importance of the cerium precursor salt[J]. Appl Catal A:Gen, 2012,437-438:166-172. doi: 10.1016/j.apcata.2012.06.028

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

Metrics
  • PDF Downloads(3)
  • Abstract views(1150)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return