Citation: LI Qiang-lin, CHEN Zhuo, ZHOU Qun, DAI Li, LI Liang, WU Shi-yong. Shengli lignite liquefaction under syngas and complex solvent[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 257-262. shu

Shengli lignite liquefaction under syngas and complex solvent

  • Corresponding author: WU Shi-yong, wsy@ecust.edu.cn
  • Received Date: 8 July 2015
    Revised Date: 21 December 2015

    Fund Project: National Natural Science Foundation of China 21476079and the Fundamental Research Funds for the Central Universities WB1414014National Natural Science Foundation of China 21476080

Figures(5)

  • The liquefaction of Shengli lignite (SL) were studied in the system of syngas (H2+CO) and complex solvent (H2O+THN) and the system of hydrogen (H2) and tetralin (THN). Asphaltene (AS) and preasphaltene (PA) from the two systems were characterized by FT-IR. The results show that both conversion and oil yield of Shengli lignite liquefaction in the (H2+CO)/(H2O+THN) system are significantly higher than those in the H2/THN system. The conversion and oil yield under syngas (H2:CO=1:1) and complex solvent (THN:H2O=1:1) reach respectively 88.79% and 55.47% at 400℃, 4MPa and 30min. The differences in the conversion and oil yield between the (H2+CO)/(H2O+THN) and H2/THN systems are 8.00% and 7.54%, respectively. This suggests that the water-gas shift reaction can produce active hydrogen in the (H2+CO)/(H2O+THN) system, which benefits the hydrogenation of SL and PA. Meanwhile, THN can stabilize the free radicals from SL pyrolysis and dissolve the products (AS and PA) from SL liquefaction. The synergistic effect of two factors results in the improvement of conversion and oil yield. This study shows that it is a new lignite liquefaction technology using the (H2+CO)/(H2O+THN) system.
  • 加载中
    1. [1]

      YAO Long-kui, TANG Yun-qian. Chemical composition of resin from Shulan brown coal[J]. J Fuel Chem Technol, 2002,30(1):86-88.  

    2. [2]

      TAHIR M M, KHURSHID M, KHAN M Z, ABBASI M K, KAZMI M H. Lignite-derived humic acid effect on growth of wheat plants in different soils[J]. Pedosphere, 2011,21(1):124-131. doi: 10.1016/S1002-0160(10)60087-2

    3. [3]

      TAY H, LI C. Changes in char reactivity and structure during the gasification of a Victorian brown coal: Comparison between gasification in O2 and CO2[J]. Fuel Process Technol, 2010,91(8):800-804. doi: 10.1016/j.fuproc.2009.10.016

    4. [4]

      YAMAGUCHI D, SANDERSON P J, LIM S, AYE L. Supercritical water gasification of Victorian brown coal: Experimental characterisation[J]. Int J Hydrogen Energy, 2009,34(8):3342-3350. doi: 10.1016/j.ijhydene.2009.02.026

    5. [5]

      LIANG Jie, FENG Yin-hui, ZHANG Yan-chun, GUO Han-bin. Technology for producing hydrogen through underground brown coal gasification[J]. J Chem Ind Eng, 2004,55:39-43.  

    6. [6]

      CHANG Li-ping, XIE Z L, XIE Ke-chang, LI Chun-zhu. Some factors influencing formation of HCN and NH3 during pyrolysis of brown coal[J]. J Chem Ind Eng, 2003,54(6):863-867.  

    7. [7]

      FENG Lin-yong, LEI Ting, ZHANG Jia-min, ZHANG Yu-lin, LIU Zhi-bin, YANG Xian-wan. Study on lignite carbonization[J]. Yunnan Metal, 2007,36(6):29-32.  

    8. [8]

      DU Shu-feng, SHU Ge-ping. Brown coal direct liquefaction process of Japan[J]. Clean Coal Technol, 2001,7(3):34-37.  

    9. [9]

      XU Yao, ZHANG De-xiang, JIN Shan, ZHAO Aa-an, GAO Jin-sheng. Study in Shengli brown coal liquefaction in CO+H2O system[J]. Chem Eng, 2010,38(3):95-98.  

    10. [10]

      SHUI Heng-fu, LIU Jian-long, WANG Zhi-cai, ZHANG De-xiang. Preliminary study on liquefaction properties of Xiaolingtan lignite under different atmospheres[J]. J Fuel Chem Technol, 2009,37(3):257-261. doi: 10.1016/S1872-5813(09)60019-0 

    11. [11]

      FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. J China Univ Min Technol, 2002,31(5):362-366.  

    12. [12]

      BAI Xiang-fei. Discussion on utilization and development of improving quality technology of lignite and low rank bituminous coal in china[J]. Coal Quality Technol, 2010(6):9-11.  

    13. [13]

      ZHAO Ye, WU Shi-yong, QIN Xiao-gang, LI Liang, WU You-qing, GAO Jin-sheng. Co-liquefaction properties of Shengli lignite and corn straw[J]. J East China Univ Sci Technol (Nat Sci Ed), 2014,40(4):414-420.  

    14. [14]

      HUANG Chuan-rong, WU Shi-yong, NIE Li, QIN Xiao-gang, WU You-qing, GAO Jin-sheng. Effects of iron-based catalysts on liquefaction of Shengli lignite[J]. J East China Univ Sci Technol (Nat Sci Ed), 2014,40(1):21-25.  

    15. [15]

      LU Yue-li, QIU Ji-liang. Study on coal liquefaction using syngas[J]. Coal Process Compr Util, 1996(2):34-36.  

    16. [16]

      NI Shuan-yue, GAO Jin-sheng, ZHU Zhi-pei. Investigation on the hydrogenation liquefaction of Chinese low-rank coals[J]. J Fuel Chem Technol, 1985,13(4):334-341.  

  • 加载中
    1. [1]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    2. [2]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    4. [4]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    5. [5]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    6. [6]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    10. [10]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(0)
  • Abstract views(1507)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return