Citation: Deng Peiyuan, Kong Qinghan, Yuan Wei, Li Changkan. Molecular Dynamics Study on the Interactions between Indoleamine 2, 3-dioxygenase I and INCB024360[J]. Chemistry, ;2019, 82(12): 1110-1114. shu

Molecular Dynamics Study on the Interactions between Indoleamine 2, 3-dioxygenase I and INCB024360

  • Corresponding author: Li Changkan, 27817180@qq.com
  • Received Date: 31 May 2019
    Accepted Date: 13 September 2019

Figures(5)

  • INCB024360 is an indoleamine 2, 3-dioxygenase I inhibitor that has entered clinical trial, but the binding mechanism is still obscure. In this study, the binding pattern of IDO1and INCB024360 was investigated using molecular docking, molecular dynamics, binding free energy calculation methods and alanine scanning mutagenesis. The results showed that six hydrogen bonds are formed in the complex, the binding free energy is -70.82 kJ/mol, and the electrostatic force is the main driving forces, the polar solvation energy is the main resistance force. Moreover, the alanine scanning mutagenesis experiment revealed that Ser263 and Glu171 are the key amino acids for the combination, and the ΔΔGbind values are 15.35 kJ/mol and 54.39 kJ/mol, respectively. The results presented herein provide an important basis for elucidating the molecular mechanisms of binding between IDO1and INCB024360.
  • 加载中
    1. [1]

      H J Ball, F F Juso, S M Bakmiwewa et al. Front. Immunol., 2014, 5: 485.

    2. [2]

      O Takikawa, R Yoshida, R Kido et al. J. Biol. Chem., 1986, 261(8): 3618~3653.

    3. [3]

      A M Myant, Y K Kim. Prog. Neuro-Psychoph., 2014, 48: 304~313. 

    4. [4]

      G C Prendergast, S Thomas, C Smith et al. Cancer Immunol. Immunother., 2014, 63(7): 721~735. 

    5. [5]

      I The'ate, B N Van, L Pilotte et al. Cancer Immunol. Res., 2015, 3(2): 161~172.

    6. [6]

      A J Muller, G C Prendergast. Curr. Cancer Drug Tar., 2007, 7(1): 31~40. 

    7. [7]

      X Y Li, W Y Yin, P V V S Sarma et al. Tetrahed. Lett., 2004, 45(46): 8569~8573. 

    8. [8]

      H Sugimoto, S Oda, T Otsuki et al. PNAS, 2006, 103(8): 2611~2616. 

    9. [9]

      P Gaspari, T Banerjee, W P Malachowski et al. J. Med. Chem., 2006, 49(2): 684~692. 

    10. [10]

      S Kumar, W P Malachowski, J B Dgiiadaway et al. J. Med. Chem., 2008, 51(6): 1706~1718. 

    11. [11]

      M R Maltino, F A Jaipuri, J Waldo et al. Cancer Res., 2013, 73(8): 491.

    12. [12]

      X Liu, N Shin, H K Koblish et al. Blood, 2010, 115(17): 3520~3530 

    13. [13]

      U F Röhrig, S R Majjigapu, R A Grosdidie et al. J. Med. Chem., 2012, 55(11): 5270~5290. 

    14. [14]

      S G Cady, M Sono. Arch. Biochem. Biophys., 1991, 291(2): 326~333. 

    15. [15]

       

    16. [16]

      M Ogrizek, J Konc, U Bren et al. Chem. Cent. J., 2016, 10: 41. 

    17. [17]

      P A Kollman, I Massov, C Reyes et al. Acc. Chem. Res., 2000, 33(12): 889~897. 

    18. [18]

      F Xu, L Q Zhang, L W He et al. Acta Chim. Sin., 2011, 69(19): 2228~2234.

    19. [19]

      W R Cnossen, R H M te Morsche, A Hoischen et al. PNAS, 2014, 111(14): 5343~5348. 

    20. [20]

      I S Moreira, P A Fernandes, M J Ramos. J. Comput. Chem., 2007, 28(3): 644~654. 

    21. [21]

      X Q Yang, J Y Liu, M H Chen et al. J. Chem. Inf. Model., 2014, 54(5): 1356~1370. 

    22. [22]

    23. [23]

      E W Yue, B Douty, B Wayland et al. J. Med. Chem., 2009, 52: 7364~7367. 

    24. [24]

      Y H Peng, S H Ueng, C T Tseng et al. J. Med. Chem., 2016, 59(1): 282~293. 

    25. [25]

      E W Yue, R Sparks, P Polam et al. ACS Med. Chem. Lett., 2017, 8(5): 486~491. 

    26. [26]

      Y Wu, T T Xu, J S Liu et al. Biochem. Bioph. Res. Co., 2017, 487(2): 339~343. 

    27. [27]

      I S Morrira, P A Fernandes, M J Ramos. J. Comput. Chem., 2007, 28(3): 644~654. 

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    8. [8]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    9. [9]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    11. [11]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    17. [17]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    18. [18]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    19. [19]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(5)
  • Abstract views(922)
  • HTML views(276)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return