Citation: MA Long, ZHANG Yu-xi, GAO Xin-hua, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Preparation of Fe3O4@PI and its catalytic performances in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 813-820. shu

Preparation of Fe3O4@PI and its catalytic performances in Fischer-Tropsch synthesis

  • Corresponding author: GAO Xin-hua, gxh@nxu.edu.cn ZHANG Jian-li, zhangjl@nxu.edu.cn
  • Received Date: 3 April 2020
    Revised Date: 4 June 2020

    Fund Project: the National Natural Science Foundation of China 21965029the National Natural Science Foundation of China 21968025The project was supported by the Key R & D Project of Ningxia (2018BEE03010) and the National Natural Science Foundation of China (21968025, 21965029)the Key R & D Project of Ningxia 2018BEE03010

Figures(11)

  • Polyimide (PI) modified Fe3O4@PI and Fe3O4-PI catalyst samples were prepared by hydrothermal-coating and ball milling methods, respectively. The effect of PI modification on the product distribution of the Fe-based catalysts for Fischer-Tropsch synthesis was investigated. The catalysts were characterized by XRD, SEM, TEM, H2-TPR, CO-TPD, FT-IR, XPS, TG and contact angle measurements. The results showed that Fe3O4, Fe3O4@PI and Fe3O4-PI were spherical with uniform particle size, and the Fe3O4@PI particle size was smaller. PI modification promoted the reduction and the hydrophilicity of Fe3O4. For Fe3O4@PI sample, PI was uniformly coated on Fe3O4 surface, which led to good thermal stability. Compared with Fe3O4 and Fe3O4-PI samples, CO adsorption was promoted on Fe3O4@PI. Compared with Fe3O4, the catalytic activity of Fe3O4@PI and Fe3O4-PI decreased, and the secondary hydrogenation ability was inhibited, resulting in increase of olefin selectivity. For Fe3O4@PI, the olefin selectivity was enhanced significantly with olefin to alkane ratio in C2-4 fraction increased from 0.50 to 2.15. PI modification with suitable content favored the formation of C5+ hydrocarbons.
  • 加载中
    1. [1]

      LU Y W, YAN Q G, HAN J, CAO B B, STREET J, YU F. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst[J]. Fuel, 2017,193:369-384. doi: 10.1016/j.fuel.2016.12.061

    2. [2]

      TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:A review[J]. ACS Catal, 2013,3(9):2130-2149. doi: 10.1021/cs4003436

    3. [3]

      YANG J, MA W, CHENG D, HOLMEN A, DAVIS B H. Fischer-Tropsch synthesis:A review of the effect of CO conversion on methane selectivity[J]. Appl Catal A:Gen, 2014,470:250-260. doi: 10.1016/j.apcata.2013.10.061

    4. [4]

      LI Z H, LIU R J, XU Y, MA X B. Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs[J]. Appl Surf Sci, 2015,347:643-650. doi: 10.1016/j.apsusc.2015.04.169

    5. [5]

      YAN B, MA L, GAO X H, ZHANG J L, MA Q X, ZHAO T S. Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 2019,585117184. doi: 10.1016/j.apcata.2019.117184

    6. [6]

      TORRES GALVIS H M, KOEKEN A C J, BITTER J H, DAVIDIAN T, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Catal Today, 2013,215:95-102. doi: 10.1016/j.cattod.2013.03.018

    7. [7]

      WANG H Y, HUANG S Y, WANG J, ZHAO Q, WANG Y F, WANG Y, MA X B. Effect of Ca promoter on the structure and catalytic behavior of FeK/Al2O3 catalyst in Fischer-Tropsch synthesis[J]. ChemCatChem, 2019,11(14):3220-3226. doi: 10.1002/cctc.201900501

    8. [8]

      CHEN X Q, DENG D H, PAN X L, HU Y F, BAO X H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chem Commun, 2015,51(1):217-220. doi: 10.1039/C4CC06600F

    9. [9]

      AN B, CHENG K, WANG C, WANG Y, LIN W B. Pyrolysis of metal-organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for Fischer-Tropsch synthesis[J]. ACS Catal, 2016,6(6):3610-3618. doi: 10.1021/acscatal.6b00464

    10. [10]

      TIAN Z P, WANG C G, SI Z, MA L L, CHEN L G, LIU Q Y, ZHANG Q, HUANG H Y. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method[J]. Appl Catal A:Gen, 2017,541:50-59. doi: 10.1016/j.apcata.2017.05.001

    11. [11]

      YUAN Y, HUANG S Y, WANG H Y, WANG Y F, WANG J, LV J, LI Z H, MA X B. Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins:Promoter and size effects[J]. ChemCatChem, 2017,9(16):3144-3152. doi: 10.1002/cctc.201700792

    12. [12]

      LIU Y, CHEN J F, BAO J, ZHANG Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal, 2015,5(6):3905-3909. doi: 10.1021/acscatal.5b00492

    13. [13]

      MARTÍNEZ DEL MONTE D, VIZCAÍNO A J, DUFOUR J, C , MARTOS C. Effect of K, Co and Mo addition in Fe-based catalysts for aviation biofuels production by Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2019,194106102. doi: 10.1016/j.fuproc.2019.05.025

    14. [14]

      GU B, HE S, ZHOU W, KANG J C, CHENG K, ZHANG Q H, WANG Y. Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas[J]. J Energy Chem, 2017,26:608-615. doi: 10.1016/j.jechem.2017.04.009

    15. [15]

      YU X F, ZHANG J L, WANG X, MA Q X, GAO X H, XIA H Q, LAI X Y, FAN S B, ZHAO T S. Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Appl Catal B:Environ, 2018,232:420-428. doi: 10.1016/j.apcatb.2018.03.048

    16. [16]

      SHI L H, CHEN J G, FANG K G, SUN Y H. CH3-modified Co/Ru/SiO2 catalysts and the performances for Fischer-Tropsch synthesis[J]. Fuel, 2008,87(4/5):521-526.  

    17. [17]

      ZHANG Juan, CHEN Jian-gang, CHEN Cong-biao, WANG Zhan-xiu, WANG Jun-gang, SUN Yu-han. Secondary reaction of olefin over Co-based catalyst for Fischer-Tropsch synthesis[J]. Petrochem Technol, 2010,39(8):855-860.  

    18. [18]

      GAO Jun-hu, WU Bao-shan, ZHOU Li-ping, YANG Yong, HAO Xu, XU Yuan-yuan, LI Yong-wang. Product distribution of Fischer-Tropsch synthesis in polar liquids[J]. Chin J Catal, 2011,32(12):1790-1802.  

    19. [19]

      WANG Lu-kai, FENG Jun-zong, LI Liang-jun, JIANG Yong-gang, FENG Jian. Research progress on hydrophobic modification of polyimide[J]. Mater Rep, 2018,32(S2):264-269.  

    20. [20]

      WANG L, LU J J, LIU M Q, LIN L, LI J J. Preparation of porous polyimide microspheres by thermal degradation of block copolymers[J]. Particuology, 2014,14(3):63-70.  

    21. [21]

      QU C Y, LIU C W, ZHOU H R, YU W M, WANG D Z, WANG D X. One-step synthesis of PI@Fe3O4 composite microspheres and practical application in Cu(Ⅱ) ion adsorption[J]. RSC Adv, 2015,5(108):88943-88949. doi: 10.1039/C5RA18756G

    22. [22]

      YAN H J, CHEN Y, XU S M. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light[J]. Int J Hydrogen Energy, 2012,37(1):125-133. doi: 10.1016/j.ijhydene.2011.09.072

    23. [23]

      ZENG S Z, GUO L M, CUI F M, GAO Z, ZHOU J, SHI J L. Template-free synthesis of crystalline polyimide spheres with radiate branches[J]. Mater Lett, 2010,64(5):625-627. doi: 10.1016/j.matlet.2009.12.024

    24. [24]

      NI Z J, QIN H F, KANG S F, BAI J R, WANG Z L, LI Y G, ZHENG Z, LI X. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO2-GC catalysts for forming lower olefins via Fischer-Tropsch synthesis[J]. J Colloid Interf Sci, 2018,516:16-22. doi: 10.1016/j.jcis.2018.01.017

    25. [25]

      ZHANG Jian-li, WANG Xu, MA Li-ping, YU Xu-fei, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. J Fuel Chem Technol, 2017,45(12):1489-1498. doi: 10.3969/j.issn.0253-2409.2017.12.011 

    26. [26]

      WU X, MA H F, ZHANG H T, QIAN W X, LIU D H, SUN Q W, YING W Y. High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core-shell catalysts[J]. Ind Eng Chem Res, 2019,58(47):21350-21362. doi: 10.1021/acs.iecr.9b04221

    27. [27]

      ROMERO-SARRIA F, BOBADILLA L F, JIMÉNEZ BARRERA E M, ODRIOZOLA J A. Experimental evidence of HCO species as intermediate in the Fischer-Tropsch reaction using operando techniques[J]. Appl Catal B:Environ, 2020,272119032. doi: 10.1016/j.apcatb.2020.119032

    28. [28]

      DING M Y, YANG Y, WU B S, LI Y W, WANG T J, MA L L. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy, 2015,160:982-989. doi: 10.1016/j.apenergy.2014.12.042

  • 加载中
    1. [1]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    2. [2]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    19. [19]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(7)
  • Abstract views(782)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return