Citation: Cui Hongmei, Huang Xing, Guo Dan, Dai Hao. Progress in the Application of Fly Ash for Wastewater Treatment[J]. Chemistry, ;2020, 83(1): 35-41. shu

Progress in the Application of Fly Ash for Wastewater Treatment

  • Corresponding author: Huang Xing, 745688587@qq.com
  • Received Date: 5 June 2019
    Accepted Date: 20 September 2019

Figures(4)

  • The high value-added comprehensive utilization of fly ash has become one of the most important issues in the field of circular economy and environmental protection. The use of fly ash for water treatment is an active attempt to turn waste into treasure and turn harm into profit. Fly ash has significant application value in membrane filtration, Fenton treatment, photocatalysis and adsorption due to its morphological characteristics, specific surface area, porosity and chemical composition. This paper focuses on the application of fly ash in these aspects, and prospects its application in wastewater treatment.
  • 加载中
    1. [1]

      Ma B, Li Y, Cui S G, et al. Trans. Nonferr. Metal Soc., 2010, 20(12):2331~2335. 

    2. [2]

      Liu J, Dong Y, Dong X, et al. Eur. Ceram. Soc., 2016, 36(4):1059~1071. 

    3. [3]

      Izquierdo M, Moreno N, Font O, et al. Fuel, 2008, 87(10-11):1958~1966. 

    4. [4]

       

    5. [5]

      Xu G, Shi X. Resour. Conserv. Recy., 2018, 136:95~109. 

    6. [6]

       

    7. [7]

       

    8. [8]

      Ebrahimi A, Saffari M, Milani D, et al. J. Clean. Prod., 2017, 156:660~669. 

    9. [9]

       

    10. [10]

       

    11. [11]

      Shaheen S M, Hooda P S, Tsadilas C D. J. Environ. Manag., 2014, 145:249~267. 

    12. [12]

       

    13. [13]

       

    14. [14]

      Yang J, Zhao Y, Zhang S, et al. Fuel Process. Technol., 2017, 167:263~270. 

    15. [15]

       

    16. [16]

       

    17. [17]

      Al-Harahsheh M S, Al Zboon K, Al-Makhadmeh L, et al. J. Environ. Chem. Eng., 2015, 3(3):1669~1677. 

    18. [18]

      Hemalatha T, Ramaswamy A. J. Clean. Prod., 2017, 147:546~559. 

    19. [19]

      Rambau K M, Musyoka N M, Manyala N, et al. J. Environ. Sci. Health A, 2018, 53(12):1115~1122. 

    20. [20]

      Revanasiddappa M, Swamy D S, Vinay K, et al. AIP Conference Proceedings. AIP Publishing, 2018, 1953(1):090070. 

    21. [21]

      Ahmaruzzaman M. Prog. Energy Combust. Sci., 2010, 36(3):327~363. 

    22. [22]

      Mayfield D B, Lewis A S. Proceedings of the 2013 World of Coal Ash (WOCA) Conference, Lexington, KY, USA. 2013, 2013:22~25. 

    23. [23]

      Tolhurst L. World of coal ash (WOCA) conference in Nashville Tennessee, 2015:1~9. 

    24. [24]

      Reddy P A K, Reddy P V L, Kwon E, et al. Environ. Int., 2016, 91:94~103. 

    25. [25]

      Duta A, Visa M. J. Photochem. Photobiol. A, 2015, 306:21~30. 

    26. [26]

       

    27. [27]

       

    28. [28]

      Song J, Wang X, Bu Y, et al. Environ. Sci. Pollut. Res., 2016, 23(22):22793~22802. 

    29. [29]

      S H Chang, Wang K S, Li H C, et al. J. Hazard. Mater., 2009, 172(2-3):1131~1136. 

    30. [30]

      Wang J, Li H J, Cheng Q K, et al. Trans. Tech. Publ., 2014, 955:623~627. 

    31. [31]

      Pouran S R, Raman A A A, Daud W M A W. J. Clean. Prod., 2014, 64:24~35. 

    32. [32]

       

    33. [33]

      Wang N, Chen J, Zhao Q, et al. RSC Adv., 2017, 7(83):52524~52532. 

    34. [34]

       

    35. [35]

       

    36. [36]

      Fan B, Wei G, Hao H, et al. Desalin. Water Treat., 2016, 57(37):17308~17321. 

    37. [37]

      Aka A, Sun C, Hua L, et al. Chemosphere, 2018, 203:327~335. 

    38. [38]

       

    39. [39]

       

    40. [40]

       

    41. [41]

       

    42. [42]

       

    43. [43]

       

    44. [44]

      Jedidi I, Saïdi S, Khmakem S, et al. Arab. J. Chem., 2009, 2(1):31~39. 

    45. [45]

      Liu J, Dong Y, Dong X, et al. J. Eur. Ceram. Soc., 2016, 36(4):1059~1071. 

    46. [46]

      Cao J, Dong X, Li L, et al. J. Eur. Ceram. Soc., 2014, 34(13):3181~3194. 

    47. [47]

      Kim H J, Pant H R, Kim J H, et al. Ceram. Int.,2014, 40(2):3023~3029. 

    48. [48]

      Wang L K, Hung Y T, Shammas N K. Handbook of Environmental Engineering, 2007, 4(1):67~68. 

    49. [49]

      Hosseini Asl S M, Javadian H, Khavarpour M, et al. J. Clean. Prod., 2019, 208:1131~1147. 

    50. [50]

      Li J, Gan J, Wu L, et al. Preparation of Fly ash Based Adsorbents for Removal Active Red X-3B from Dying Wastewater//MATEC Web of Conferences. EDP Sciences, 2016, 67:07004. 

    51. [51]

      Apak R, Tütem E, Hügül M, et al. Water Res., 1998, 32(2):430~440. 

    52. [52]

      Ricou-Hoeffer P, Lecuyer I, Le Cloirec P. Water Res., 2001, 35(4):965~976. 

    53. [53]

      Rao M, Parwate A V, Bhole A G. Waste Manag., 2002, 22(7):821~830. 

    54. [54]

      Rio S, Delebarre A. Fuel, 2003, 82(2):153~159. 

    55. [55]

      Golbad S, Khoshnoud P, Abuzahra N. Int. J. Environ. Sci. Technol., 2016, 14(1):1~8. 

    56. [56]

      Lieberman R N, Green U, Segev G, et al. Fuel, 2015, 153:437~444. 

    57. [57]

       

    58. [58]

      Diamadopoulos E, Ioannidis S, Sakellaropoulos G P. Water Res., 1993, 27(12):1773~1777. 

    59. [59]

       

    60. [60]

      Aksu Z, Yener J. Waste Manag., 2001, 21(8):695~702. 

    61. [61]

       

    62. [62]

      Janoš P, Buchtová H, Rýznarová M. Water Res., 2003, 37(20):4938~4944. 

    63. [63]

      Saakshy A, Singh K, Gupta A B, et al. J. Clean. Prod., 2016, 112(1):1227~1240. 

    64. [64]

      Kushwaha J P, Srivastava V C, Mall I D. Bioresour. Technol., 2010, 101(10):3474~3483. 

    65. [65]

      Andersson K I, Eriksson M, Norgren M. Ind. Eng. Chem. Res., 2012, 51(8):3444~3451. 

    66. [66]

       

    67. [67]

      Alonso-Davila P, Torres-Rivera O L, Leyva-Ramos R, et al. Clean Soil Air Water, 2012, 40(1):45~53. 

    68. [68]

      Mohan S V, Mohan S K.J. Sci. Ind. Res., 2000, 60:410~415. 

    69. [69]

      Raymundo-Pinero E, Cazorla-Amorós D, Linares-Solano A. Carbon, 2003, 41(10):1925~1932. 

    70. [70]

      Tailor R, Shah B, Shah A. J. Chem. Eng. Data, 2012, 57(5):1437~1448. 

    71. [71]

      Seyed M H A, Ghadi A, Baei M S, et al. Fuel, 2018, 217:320~342. 

    72. [72]

       

    73. [73]

      Dash S, Chaudhuri H, Gupta R, et al. J. Environ. Chem. Eng., 2018, 6(5):5897~5905. 

    74. [74]

      Chaudhary N,Balomajumder C, Agrawal B, et al. Sep. Sci. Technol., 2015, 50(5):690~699. 

    75. [75]

       

    76. [76]

       

    77. [77]

       

    78. [78]

       

    79. [79]

       

    80. [80]

       

    81. [81]

      Sočo E, Kalembkiewicz J. J. Environ. Chem. Eng., 2013, 1(3):581~588. 

    82. [82]

      Nascimento M, Soares P S M, de Souza V P. Fuel, 2009, 88(9):1714~1719. 

    83. [83]

      Apiratikul R, Pavasant P. Chem. Eng. J., 2008, 144(2):245~258. 

    84. [84]

      Hui K S, Chao C Y H, Kot S C. J. Hazard. Mater., 2005, 127(1-3):89~101. 

    85. [85]

       

    86. [86]

      Visa M, Isac L, Duta A. Appl. Surf. Sci., 2012, 258(17):6345~6352. 

    87. [87]

      Javadian H, Ghorbani F, Tayebi H A, et al. Arab. J. Chem., 2015, 8(6):837~849. 

    88. [88]

       

    89. [89]

       

    90. [90]

       

    91. [91]

       

    92. [92]

      Fungaro D A, Yamaura M, Craesmeyer G R. Int. Rev. Chem. Eng., 2012, 4(3):353~358. 

    93. [93]

      Noli F, Kapnisti M, Buema G, et al. Appl. Radiat. Isotopes, 2016, 116:102~109. 

  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    14. [14]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    15. [15]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    16. [16]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    20. [20]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

Metrics
  • PDF Downloads(8)
  • Abstract views(886)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return