Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging
- Corresponding author: CHEN Jian-gang, chenjg@sxicc.ac.cn
Citation:
SHI He-xiang, LI Zhi-kai, LIU Ke-feng, XIAO Hai-cheng, KONG Fan-hua, ZHANG Juan, CHEN Jian-gang. Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(7): 822-829.
DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002,71(3/4):227-241.
ZHENG S, SUN J, SONG D, CHEN Z, CHEN J. The facile fabrication of magnetite nanoparticles and their enhanced catalytic performance in Fischer-Tropsch synthesis[J]. Chem Commun, 2015,51(55):11123-11125. doi: 10.1039/C5CC03336E
DUPAIN X, KRUL R A, SCHAVERIEN C J, MAKKEE M, MOULIJN J A. Production of clean transportation fuels and lower olefins from Fischer-Tropsch synthesis waxes under fluid catalytic cracking conditions[J]. Appl Catal B: Environ, 2006,63(3/4):277-295.
CAVELL R G, CREED B, GELMINI L, LAW D J, MCDONALD R, SANGER A R, SOMOGYVARI A. Design, syntheses and application of new phosphine and dithiophosphinate complexes of nickel: Catalyst precursors for the oligomerization of ethylene[J]. Inorg Chem, 1998,37(4):757-763. doi: 10.1021/ic970798w
JANARDANARAO M. Direct catalytic conversion of synthesis gas to lower olefins[J]. Ind Eng Chem Res, 1990,29(9):1735-1753. doi: 10.1021/ie00105a001
LIU Z, SUN C, WANG G, WANG Q, CAI G. New progress in R & D of lower olefin synthesis[J]. Fuel Process Technol, 2000,62(2/3):161-172.
PARK J, LEE Y, JUN K, BAE J W, VISWANADHAM N, KIM Y H. Direct conversion of synthesis gas to light olefins using dual bed reactor[J]. J Ind Eng Chem, 2009,15(6):847-853. doi: 10.1016/j.jiec.2009.09.011
TORRES GALÜIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012,335(6070):835-838. doi: 10.1126/science.1215614
MA C, CHEN J. Effect of hydrothermal treatment on precipitated iron catalyst for Fischer-Tropsch Synthesis[J]. Catal Lett, 2015,145(2):702-711. doi: 10.1007/s10562-014-1457-4
SUN J, ZHENG S, ZHANG K, SONG D, LIU Y, SUN X, CHEN J. The crystal plane effect of CoFe nanocrystals on Fischer-Tropsch synthesis[J]. J Mater Chem A, 2014,2(32):13116-13122. doi: 10.1039/C4TA02425G
JOYNER R W. The mechanism of chain growth in the Fischer-Tropsch hydrocarbon synthesis[J]. Catal Lett, 1988,1(10):307-310. doi: 10.1007/BF00774872
MADON R J, IGLESIA E. The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts[J]. J Catal, 1993,139(2):576-590. doi: 10.1006/jcat.1993.1051
LINGHU W, LIU X, LI X, FUJIMOTO K. Selective synthesis of higher linear alpha-olefins over cobalt Fischer-Tropsch catalyst[J]. Catal Lett, 2006,108(1/2):11-13.
JANANI H, REZVANI A R, GRIVANI G H, MIRZAEI A A. Fischer-Tropsch synthesis of hydrocarbons over new Co/Ce bimetallic catalysts derived from dipicolinate and carbonyl metal complexes[J]. J Inorg Organomet Polym, 2015,25(5):1169-1182. doi: 10.1007/s10904-015-0225-2
RAMASAMY K K, GRAY M, JOB H, WANG Y. Direct syngas hydrogenation over a Co-Ni bimetallic catalyst: Process parameter optimization[J]. Chem Eng Sci, 2015,135:266-273. doi: 10.1016/j.ces.2015.03.064
SHIMURA K, MIYAZAWA T, HANAOKA T, HIRATA S. Fischer-Tropsch synthesis over alumina supported bimetallic Co-Ni catalyst: Effect of impregnation sequence and solution[J]. J Mol Catal A: Chem, 2015,407:15-24. doi: 10.1016/j.molcata.2015.06.013
FARZANFAR J, REZVANI A R. Inorganic complex precursor route for preparation of high-temperature Fischer-Tropsch synthesis Ni-Co nanocatalysts[J]. Res Chem Intermed, 2015,41(11):8975-9001. doi: 10.1007/s11164-015-1942-4
CALDERONE V R, SHIJU N R, FERRE D C, ROTHENBERGA G. Bimetallic catalysts for the Fischer-Tropsch reaction[J]. Green Chem, 2011,13(8):1950-1959. doi: 10.1039/c0gc00919a
KEYSER M J, EVERSON R C, ESPINOZA R L. Fischer-Tropsch studies with cobalt-manganese oxide catalysts: Synthesis performance in a fixed bed reactor[J]. Appl Catal A: Gen, 1998,171(1):99-107. doi: 10.1016/S0926-860X(98)00083-0
DUVENHAGE D J, COVILLE N J. Fe:Co/TiO2 bimetallic catalysts for the Fischer-Tropsch reaction I. Characterization and reactor studies[J]. Appl Catal A: Gen, 1997,153(1/2):43-67.
DUVENHAGE D J, COVILLE N J. Fe: Co/TiO2 bimetallic catalysts for the Fischer-Tropsch reaction: part 2. the effect of calcination and reduction temperature[J]. Appl Catal A: Gen, 2002,233(1/2):63-75.
TIHAY F, ROGER A C, KIENNEMANN A, POURROY G. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catal Today, 2000,58(4):263-269. doi: 10.1016/S0920-5861(00)00260-1
MIRZAEI A A, HABIBPOUR R, KASHI E. Preparation and optimization of mixed iron cobalt oxide catalysts for conversion of synthesis gas to light olefins[J]. Appl Catal A: Gen, 2005,296(2):222-231. doi: 10.1016/j.apcata.2005.08.033
MA X, SUN Q, YING W, FANG D. Effects of the ratio of Fe to Co over Fe-Co/SiO2 bimetallic catalysts on their catalytic performance for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2009,18(2):232-236. doi: 10.1016/S1003-9953(08)60102-4
DE LA PENA O'SHEA V A, ÁLÜAREZ-GALÜAN M C, CAMPOS-MARTIN J M, FIERRO J L G. Fischer-Tropsch synthesis on mono-and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors[J]. Appl Catal A: Gen, 2007,326(1):65-73. doi: 10.1016/j.apcata.2007.03.037
YOKOTA K, FUJIMOTO K. Supercritical phase Fischer-Tropsch synthesis reaction[J]. Fuel, 1989,68(2):255-256. doi: 10.1016/0016-2361(89)90335-9
SAVOST'YANOV A P, YAKOVENKOA R E, NAROCHNYI G B, LAPIDUS A L. Effect of the dilution of synthesis gas with nitrogen on the Fischer-Tropsch process for the production of hydrocarbons[J]. Solid Fuel Chem, 2015,49(6):356-359. doi: 10.3103/S0361521915060099
LU X, ZHU X, HILDEBRANDT D, LIU X, GLASSER D. A new way to look at Fischer-Tropsch Synthesis using flushing experiments[J]. Ind Eng Chem Res, 2011,50(8):4359-4365. doi: 10.1021/ie102095c
SCHULZ H. Major and minor reactions in Fischer-Tropsch synthesis on cobalt catalysts[J]. Top Catal, 2003,26(1/4):73-85.
SCHULZ H, NIE Z, OUSMANOV F. Construction of the Fischer-Tropsch regime with cobalt catalysts[J]. Catal Today, 2002,71(3/4):351-360.
WILSON J, DE GROOT C. Atomic-scale restructuring in high-pressure catalysis[J]. J Phys Chem, 1995,99:7860-7866. doi: 10.1021/j100020a005
LIU Y, CHEN J, FANG K, WANG Y, SUN Y. A large pore-size mesoporous zirconia supported cobalt catalyst with good performance in Fischer-Tropsch synthesis[J]. Catal Commun, 2007,8(6):945-949. doi: 10.1016/j.catcom.2006.06.019
KHODAKOV A Y, GRIBOVOL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size efects in Fischer Tropsch synthesis over cobalt-dupported mesoporous silicas[J]. J Catal, 2002,206(2):230-241. doi: 10.1006/jcat.2001.3496
OLEWSKI T, TODIC B, NOWICKI L, NIKACEVIC N, BUKUR D B. Hydrocarbon selectivity models for iron-based Fischer-Tropsch catalyst[J]. Chem Eng Res Des, 2015,95:1-11. doi: 10.1016/j.cherd.2014.12.015
YAN F, QIAN W, SUN Q, ZHANG H, YING W, FANG D. Product distributions and olefin-to-paraffin ratio over an iron-based catalyst for Fischer-Tropsch synthesis[J]. React Kinet Mech Cat, 2014,113(2):471-485. doi: 10.1007/s11144-014-0746-7
TSUBAKI N, FUJIMOTO K. Product control in Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2000,62(2/3):173-186.
ERKEY C, RODDEN J B, AKGERMAN A. Diffusivities of synthesis gas and n-alkanes in Fischer-Tropsch wax[J]. Energy Fuels, 1990,4(3):275-276. doi: 10.1021/ef00021a010
IGLESIA E, REYES S C, MADON R J. Transport-enhanced alpha-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis[J]. J Catal, 1991,129(1):238-256. doi: 10.1016/0021-9517(91)90027-2
SCHULZ H, CLAEYS M. Reactions of alpha-olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor[J]. Appl Catal A: Gen, 1999,186(1/2):71-90.
CHENG J, SONG T, HU P, LOK C M, ELLIS P, FRENCH S. A density functional theory study of the α-olefin selectivity in Fischer-Tropsch synthesis[J]. J Catal, 2008,255(1):20-28. doi: 10.1016/j.jcat.2008.01.027
KUIPERS E W, VINKENBURG I H, OOSTERBEEK H. Chain-length dependence of alpha-olefin readsorption in Fischer-Tropsch synthesis[J]. J Catal, 1995,152(1):137-146. doi: 10.1006/jcat.1995.1068
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Bin Chen , Chaoyang Zheng , Dehuan Shi , Yi Huang , Renxia Deng , Yang Wei , Zheyuan Liu , Yan Yu , Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Chang LIU , Chao ZHANG , Tongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
①: H2 cylinder; ②: N2 cylinder; ③: syngas cylinder; ④: regulators; ⑤: mass flow controllers; ⑥: shut-off valves; ⑦: fixed bed reactor; ⑧: hot trap; ⑨: cold trap; ⑩: gas chromatograph
(a): 0.2 MPa; (b): 1.0 MPa; (c): 2.0 MPa
▲: 517 K; ○: 507 K; ■: 497 K; ▽: without purging
(a): 497 K; (b): 507 K; (c): 517 K
■: without purging; ○: 2.0 MPa; ▲: 0.2 MPa
(a): 497 K; (b): 507 K; (c): 517 K
■: without purging; ○: 2.0 MPa; ▲: 0.2 MPa
■: 0.2 MPa, 517 K; ○: 1.0 MPa, 517 K; ▲: 0.2 MPa, 507 K; ▽: 1.0 MPa, 507 K; ◆: without purging