Citation: Zhiwei Xi, Liqiu Liu, Yingchun Wang. Recent Advances in Palladium Catalyzed Isocyanide Reactions[J]. Chemistry, ;2021, 84(5): 450-459. shu

Recent Advances in Palladium Catalyzed Isocyanide Reactions

  • Corresponding author: Yingchun Wang, wangyingchunjsu@163.com
  • Received Date: 27 September 2020
    Accepted Date: 4 December 2020

Figures(22)

  • As an important class of active synthons in organic synthesis, isocyanide is used to synthesize natural products, drug molecules and nitrogen-containing molecules or heterocyclic compounds with potential biological activity. In recent years, palladium-catalyzed various reactions involving isocyanide, especially the insertion reaction of isocyanide, have been widely concerned, studied and applied, which is of great practical significance. In this review, according to different reaction types, the latest research progress in palladium-catalyzed isocyanide reactions is introduced.
  • 加载中
    1. [1]

      Lieke W. Ann. Chem. Pharm., 1859, 112: 316~321. 

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Boyarskiy V P, Bokach N A, Luzyanin K V, et al. Chem. Rev., 2015, 115(7): 2698~2779. 

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      Sadjadi S, Heravi M M, Nazari N. RSC Adv., 2016, 6(58): 53203~53272. 

    10. [10]

      Yurino T, Tani R, Ohkuma T. ACS Catal., 2019, 9(5): 4434~4440. 

    11. [11]

      Okumura S, Sun F Z, Ishida N, et al. J. Am. Chem. Soc., 2017, 139(36): 12414~12417. 

    12. [12]

      Du J, Huang Z M, Zhang Y N, et al. Chem. Eur. J., 2019, 25(43): 10149~10155. 

    13. [13]

      Ito Y, Ito I, Hirao T, et al. Synth. Commun., 1974, 4(2): 97~103. 

    14. [14]

    15. [15]

    16. [16]

      Collet J W, Roose T R, Ruijter E, et al. Angew. Chem. Int. Ed., 2019, 59(2): 540~558.

    17. [17]

      Yang Q, Li C, Cheng M X, et al. ACS Catal., 2016, 6(7): 4715~4719. 

    18. [18]

      Li M, Fang S J, Zheng J, et al. Org. Lett., 2019, 21(20): 8439~8443. 

    19. [19]

      Chen B, Wu X F. Org. Lett., 2020, 22(2): 636~641. 

    20. [20]

      Chen Z B, Liu K, Zhang F L, et al. Org. Biomol. Chem., 2017, 15(38): 8078~8083. 

    21. [21]

      Clemenceau A, Wang Q, Zhu J P. Org. Lett., 2018, 20(1): 126~129. 

    22. [22]

      Wang X, Fu J P, Xie J X, et al. Org. Biomol. Chem., 2020, 18(26): 4936~4940. 

    23. [23]

      Otsuka S, Nogi K, Yorimitsu H. Angew. Chem. Int. Ed., 2018, 57(22): 6653~6657. 

    24. [24]

    25. [25]

      Ito Y, Hirao T, Saegusa T. J. Org. Chem., 1975, 40(20): 2981~2982. 

    26. [26]

    27. [27]

      Zhu F X, Li Y H, Wang Z C, et al. Chem. Eur. J., 2016, 22(23): 7743~7746. 

    28. [28]

      Lu F L, Chen Z Y, Li Z, et al. Org. Lett., 2017, 19(15): 3954~3957. 

    29. [29]

      Zhang Z, Li Z Y, Fu B, et al. Chem. Commun., 2015, 51(91): 16312~16315. 

    30. [30]

    31. [31]

      Wang B, He D, Ren B G, et al. Chem. Commun., 2020, 56(6): 900~903. 

    32. [32]

      Hu W G, Li Z, Li J W, et al. Adv. Synth. Catal., 2017, 359(20): 3509~3514. 

    33. [33]

      Tao S W, Zhou J Y, Liu R Q, et al. J. Org. Chem., 2019, 84(12): 8121~8130. 

    34. [34]

      Dechert-Schmitt A, Garnsey M R, Wisniewska H M, et al. ACS Catal., 2019, 9(5): 4508~4515. 

    35. [35]

      Liu B, Gao H L, Yu Y, et al. J. Org. Chem., 2013, 78(20): 10319~10328. 

    36. [36]

      Chen Z, Duan H Q, Jiang X, et al. Synlett, 2014, 25(123): 1425~1430.

    37. [37]

      Wang J, Tang S, Zhu Q. Org. Lett., 2016, 18(13): 3074~3077. 

    38. [38]

      Tang T, Fei X D, Ge Z Y, et al. J. Org. Chem., 2013, 78(7): 3170~3175. 

    39. [39]

      Curran D P, Du W. Org. Lett., 2002, 4(19): 3215~3218. 

    40. [40]

       

    41. [41]

       

    42. [42]

       

    43. [43]

      Tong W, Li W H, He Y, et al. Org. Lett., 2018, 20(8): 2494~2498. 

    44. [44]

       

    45. [45]

      Chen G S, Chen S J, Luo J, et al. Angew. Chem. Int. Ed., 2020, 59(2): 614~621. 

    46. [46]

      Song B R, Xu B. Chem. Soc. Rev., 2017, 46(4): 1103~1123. 

    47. [47]

      Luo S, Xiong Z, Lu Y Z, et al. Org. Lett., 2018, 20(7): 1837~1840. 

    48. [48]

      Tahara A, Nagino S, Sunada Y, et al. Organometallics, 2018, 37(15): 2531~2543. 

    49. [49]

       

    50. [50]

      Liu Y L, Zhang K, Jiang W D, et al. Chem. Asian J., 2017, 12(5): 568~576. 

    51. [51]

      Huang H C, Qiu Z J, Han T, et al. ACS Macro Lett., 2017, 6(12): 1352~1356. 

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    8. [8]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    9. [9]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    10. [10]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    11. [11]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    12. [12]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    16. [16]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    17. [17]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    18. [18]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    20. [20]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

Metrics
  • PDF Downloads(40)
  • Abstract views(3455)
  • HTML views(682)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return