Citation: Zha Xiaosong. Reductive Dehalogenation of Bromoform by Iron Based Bimetallic Materials[J]. Chemistry, ;2020, 83(2): 172-178. shu

Reductive Dehalogenation of Bromoform by Iron Based Bimetallic Materials

  • Received Date: 30 September 2019
    Accepted Date: 10 December 2019

Figures(10)

  • In this paper, iron based bimetallic materials (Cu/Fe and Pd/Fe) were prepared and their reductive dehalogenation effects on bromoform was investigated. The reduction effect of Cu/Fe and Pd/Fe bimetal materials on bromoform will increase as the addition amount of bimetal increases; the presence of high concentration of H+ in the solution is conducive to the reduction; furthermore, the presence of dissolved oxygen has a inhibitory effect on reductive dehalogenation. The reductive dehalogenation between bimetallic materials and bromoform includes direct reduction and indirect reduction. Bimetallic materials achieved high performance because galvanic cells were created between Fe (serving as an anode) and plating elements (serving as a cathode). This structure enhanced the reducibility of iron for reductive dehalogenation by facilitating iron corrosion. The Pd/Fe system showed a better performance than Cu/Fe, which was attributed to a higher potential gradient that promoting the hydrogen production.
  • 加载中
    1. [1]

      Rook J J. Water Treat. Exam., 1974, 23: 234~243.

    2. [2]

      Wang X, Mao Y, Tang S, et al. Front. Environ. Sci. Eng., 2015, 9(1): 3~15.

    3. [3]

      Huang H, Zhu H H, Gan W H, et al. Chemosphere, 2017, 188: 257~264.

    4. [4]

      Kosyakov D M, Ul'yanovskii N V, Popov M S, et al. Water Res., 2017, 127: 183~190.

    5. [5]

      Sweeny K H. Reductive degradation treatment of industrial and municipal wastewaters//Proceedings of Water Reuse Symposium. AWWA, Research Foundation, Denver, Colo. 1979, 2: 1487~1497.

    6. [6]

    7. [7]

    8. [8]

      Pearson C R, Hozalski R M, Arnold W A. Environ. Toxicol. Chem., 2005, 24(12): 3037~3042. 

    9. [9]

      Tang S, Wang X M, Yang H W, et al. Chemosphere, 2013, 90: 1563~1567. 

    10. [10]

      Xie L, Shang C. Chemosphere, 2007, 66(9): 1652~1659.

    11. [11]

    12. [12]

      Wang X Y, Ning P, Liu H L, et al. Appl. Catal. B, 2010, 94: 55~63. 

    13. [13]

      Chen C, Wang X, Chang Y, et al. J. Environ. Sci., 2008, 20(8): 945~951. 

    14. [14]

      Wang X Y, Chen C, Chang Y. J. Hazard. Mater., 2009, 161: 815~823.

    15. [15]

      Guasp E, Wei R. J. Chem. Technol. Biotechnol., 2003, 78: 654~658. 

    16. [16]

      Lien H, Zhang W. J. Environ. Eng., 1999, 125(11): 1042~1047.

    17. [17]

      Cwiertny D M, Bransfield S J, Livi K J T, et al. Environ. Sci. Technol., 2006, 40: 6837~6843.

    18. [18]

      Hua G, Reckhow D A, Kim J. Environ. Sci. Technol., 2006, 40(9): 3050~3056. 

    19. [19]

      American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 20th. Washington D C, USA: American Public Health Association/American Water Works Association/Water Environment Federation, 1998.

    20. [20]

      U.S. Environmental Protection Agency, 2003. Method 552.3: Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection. EPA 815-B-03-002. Revision 1.0.

    21. [21]

      Ghauch A, Assi H A, Bdeir S. J. Hazard. Mater., 2010, 182: 64~74. 

    22. [22]

      Lien H L, Zhang W X. Appl. Catal. B, 2007, 77: 110~116.

    23. [23]

      Li T, Farrell J. Environ. Sci. Technol., 2000, 34: 173~179. 

  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    3. [3]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    7. [7]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    14. [14]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    15. [15]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    19. [19]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(9)
  • Abstract views(841)
  • HTML views(308)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return