Citation: YAN Lun-jing, KONG Xiao-jun, BAI Yong-hui, XIE Ke-chang, LI Fan. Catalytic upgrading of gaseous tar from coal pyrolysis over Mo and Ni-modified HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 30-36. shu

Catalytic upgrading of gaseous tar from coal pyrolysis over Mo and Ni-modified HZSM-5

  • Corresponding author: LI Fan, fanli@tyut.edu.cn
  • Received Date: 13 July 2015
    Revised Date: 8 October 2015

    Fund Project: Shanxi Provincial Education Department 2015BY18The project was supported by the National Natural Science Foundation of China 21376160

Figures(9)

  • The distributions of light aromatic hydrocarbons in the gaseous tar were investigated upon upgrading over Mo and Ni-modified HZSM-5 catalysts during coal pyrolysis. The results show that the yield of light aromatic hydrocarbon from lignite (XM) pyrolysis is increased by 220% after the cracking of gaseous tar over HZSM-5 zeolite, due to the aromatization of olefins or alkanes and the dehydroxylation of phenols. The loading of Mo and Ni on HZSM-5 is able to enhance the formation of light aromatic hydrocarbons; Ni can obviously promote the side chain cracking, whereas Mo is more effective for the formation of aromatic compounds with side chains such as toluene and xylene. Without catalysts, the yield of light aromatic hydrocarbons from coking coal (FX) pyrolysis is about 2.2 and 2.4 times higher than that from XM and bituminous coal (PS) pyrolysis, respectively. By using catalysts, however, the yield of light aromatic hydrocarbons from XM pyrolysis is obviously higher than that from PS pyrolysis and close to that from FX pyrolysis, as XM is provided with abundant oxygen containing functional group and aliphatic structure that can be transformed to light aromatic hydrocarbons over the HZSM-5 catalysts.
  • 加载中
    1. [1]

      SONOYAMA N, NOBUTA K, KIMURA T, HOSOKAI S, HAYASHI J-I, TAGO T, MASUDA T. Production of chemicals by cracking pyrolytic tar from Loy Yang coal over iron oxide catalysts in a steam atmosphere[J]. Fuel Process Technol, 2011,92(4):771-775. doi: 10.1016/j.fuproc.2010.09.036

    2. [2]

      ZHANG Hai-yong, WANG Yong-gang, ZHANG Pei-zhong, LIN Xiong-chao, ZHU Yu-fei. Preparation of NiW catalysts with alumina and zeolite Y for hydroprocessing of coal ta[J]. J Fuel Chem Technol, 2013, 41(9): 1085-1091. 

    3. [3]

      SEITZ M, HESCHEL W, NAGLER T, NOWAK S, ZIMMERMANN J, STAM-CREUTZ T. Influence of catalysts on the pyrolysis of lignites[J]. Fuel, 2014,134(0):669-676.  

    4. [4]

      LIU G, WRIGHT MM, ZHAO Q, BROWN RC. Catalytic fast pyrolysis of duckweed: Effects of pyrolysis parameters and optimization of aromatic production[J]. J Anal Appl Pyrolysis, 2015,112(0):29-36.  

    5. [5]

      CHAREONPANICH M, BOONFUENG T, LIMTRAKUL J. Production of aromatic hydrocarbons from Mae-Moh lignite[J]. Fuel Process Technol, 2002,79(2):171-179. doi: 10.1016/S0378-3820(02)00111-X

    6. [6]

      CHAREONPANICH M, TAKEDA T, YAMASHITA H, TOMITA A. Catalytic hydrocracking reaction of nascent coal volatile matter under high pressure[J]. Fuels, 1994,73(5):666-670. doi: 10.1016/0016-2361(94)90006-X

    7. [7]

      CHAREONPANICH M, ZHANG Z G, NISHIJIMA A, TOMITA A. Effect of catalysts on yields of monocyclic aromatic hydrocarbons in hydrocracking of coal volatile matter[J]. Fuels, 1995,74(11):1636-1640. doi: 10.1016/0016-2361(95)00147-W

    8. [8]

      TAKARADA T, ONOYAMA Y, TAKAYAMA K, SAKASHITA T. Hydropyrolysis of coal in a pressurized powder-particle fluidized bed using several catalysts[J]. Catal Today, 1997(39):127-136.  

    9. [9]

      NELSON P F, TYLER R J. Catalytic reactions of products from the rapid hydropyrolysis of coal at atmospheric pressure[J]. Energy Fuels, 1989(3):488-494.  

    10. [10]

      LI L, MORISHITA K, TAKARADA T. Light fuel gas production from nascent coal volatiles using a natural limonite ore[J]. Fuels, 2007,86(10/11):1570-1576.  

    11. [11]

      WANG Xin-dong, HAN Jiang-ze, LU Jiang-yin, GAO Shi-qiu, XU Guang-wen. Catalytic cracking of coal pyrolysis product for oil and gas upgrading over char-based catalysts[J]. CIESC J, 2012(12):3897-3905.  

    12. [12]

      WANG F J, ZHANG S, CHEN Z D, LIU C, WANG Y G. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. J Anal Appl Pyrolysis, 2014,105(0):269-275.  

    13. [13]

      FAN Y, CAI Y, LI X, YU N, YIN H. Catalytic upgrading of pyrolytic vapors from the vacuum pyrolysis of rape straw over nanocrystalline HZSM-5 zeolite in a two-stage fixed-bed reactor[J]. J Anal Appl Pyrolysis, 2014,108(0):185-195.  

    14. [14]

      BEN H, RAGAUSKAS A J. Influence of Si/Al Ratio of ZSM-5 zeolite on the properties of lignin pyrolysis products[J]. Acs Sustainable Chem Eng, 2013,1(3):316-324. doi: 10.1021/sc300074n

    15. [15]

      FOSTER A J, JAE J, CHENG Y T, HUBER G W, LOBO R F. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5[J]. Appl Catal A: Gen, 2012,423-424(0):154-161.  

    16. [16]

      BAKAR M S A, TITILOYE J O. Catalytic pyrolysis of rice husk for bio-oil production[J]. J Anal Appl Pyrolysis, 2013,103(0):362-368.  

    17. [17]

      HUBER G W, CORMA A. Synergies between Bio-and Oil refineries for the production of fuels from biomass[J]. Angew Chem Int Ed, 2007,46(38):7184-7201. doi: 10.1002/(ISSN)1521-3773

    18. [18]

      THANGALAZHY-GOPAKUMAR S, ADHIKARI S, CHATTANATHAN S A, GUPTA R B. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst[J]. Bioresour Technol, 2012,118(0):150-157.  

    19. [19]

      ZHANG M, RESENDE F L P, MOUTSOGLOU A. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS[J]. Fuels, 2014,116(0):358-369.  

    20. [20]

      ZHANG M, MOUTSOGLOU A. Catalytic fast pyrolysis of prairie cordgrass lignin and quantification of products by pyrolysis-gas chromatography-mass spectrometry[J]. Energy Fuels, 2014,28(2):1066-1073. doi: 10.1021/ef401795z

    21. [21]

      VALLE B, GAYUBO A G, AGUAYO A S T, OLAZAR M, BILBAO J. Selective production of aromatics by crude bio-oil valorization with a Nickel-modified HZSM-5 zeolite catalyst[J]. Energy Fuels, 2010,24:2060-2070.  

    22. [22]

      VALLE B, CASTABO P, OLAZAR M, BILBAO J, GAYUBO AG. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. J Catal, 2012,285:304-314. doi: 10.1016/j.jcat.2011.10.004

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    9. [9]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(2)
  • Abstract views(958)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return