Citation: LI Jing, LIU Gui-long, WANG Jia-ming, LIU Yuan. Ni-Co and Ni-Cu bimetallic alloy catalysts for CO methanation[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 610-618. shu

Ni-Co and Ni-Cu bimetallic alloy catalysts for CO methanation

  • Corresponding author: LIU Yuan, yuanliu@tju.edu.cn
  • Received Date: 20 February 2020
    Revised Date: 20 April 2020

    Fund Project: the National Natural Science Foundation of China 21576192the National Natural Science Foundation of China 51904152the National Natural Science Foundation of China 21872101the National Natural Science Foundation of China 21962014The project was supported by the National Natural Science Foundation of China (51904152, 21872101, 21576192, 21962014)

Figures(8)

  • Ni-Co/La2O3 and Ni-Cu/La2O3 bimetallic alloy catalysts were prepared by using LaNi0.9Co0.1O3 and LaNi0.9Cu0.1O3 perovskite-type oxides precursors. The results demonstrate that the components are diluted with each other in the bimetallic alloy catalyst and exhibit strong anti-sintering ability. The carbon deposited on the catalyst surface mainly depends on the adsorption state of CO, the modulated adsorption state and adsorption strength of CO contribute to the strong anti-carbon deposition ability of the Ni-Co bimetallic catalysts. The Ni-Co bimetallic alloy catalysts show remarkable activity, selectivity, and stability in the CO methanation reaction.
  • 加载中
    1. [1]

      YAO Y, YU F, LI J, LI J, LI Y, WANG Z, ZHU M, SHI Y, DAI B, GUO X. Two-dimensional NiAl layered double oxides as non-noble metal catalysts for enhanced CO methanation performance at low temperature[J]. Fuel, 2019,255115770. doi: 10.1016/j.fuel.2019.115770

    2. [2]

      HUSSAIN I, JALIL A A, MAMAT C R, SIANG T J, AZAMI M S, HAMBALI H U. Role of promoters in hoisting the catalytic performance for enhanced CO methanation[J]. J Energy Safety Technol, 2019,2(1):15-20. doi: 10.11113/jest.v2n1.38

    3. [3]

      XIONG Wei, DING Ming-yue, TU Jun-ling, CHEN Lun-gang, WANG Tie-jun, ZHANG Qi, MA Long-long. Methanation of biomass pyrolysis gas over Ni catalyst with different supports[J]. J Fuel Chem Technol, 2014,42(8):958-964. doi: 10.3969/j.issn.0253-2409.2014.08.010 

    4. [4]

      ATKINSON G B, NICKS L J. Mischmetal-nickel alloys as methanation catalysts[J]. J Catal, 1977,46(3):417-419. doi: 10.1016/0021-9517(77)90226-3

    5. [5]

      XU Chao, WANG Xing-jun, HU Xian-hui, CHEN Xue-li, WANG Fu-chen. Study on the syngas methanation of nickel-based catalyst[J]. J Fuel Chem Technol, 2012,40(2):216-220. doi: 10.3969/j.issn.0253-2409.2012.02.014 

    6. [6]

      WANG F, LI Y, CAI W, ZHAN E, MU X, SHEN W. Ethanol steam reforming over Ni and Ni-Cu catalysts[J]. Catal Today, 2009,146(1/2):31-36.  

    7. [7]

      TAKEGUCHIA T, KANIA Y, YANOA T, KIKUCHIA R, EGUCHIA K, TSUJIMOTOB K, UCHIDAC Y, UENOC A, OMOSHIKIC K, AIZAWAC M. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. J Power Sources, 2002,112:588-595. doi: 10.1016/S0378-7753(02)00471-8

    8. [8]

      LIU P, ZHAO B, LI S, SHI H, MA M, LU J, YANG F, DENG X, JIA X, MA X, YAN X. Influence of the microstructure of Ni-Co bimetallic catalyst on CO methanation[J]. Ind Eng Chem Res, 2020,59(5):1845-1854. doi: 10.1021/acs.iecr.9b05951

    9. [9]

      KUSTOV A L, FREY A M, LARSEN K E, JOHANNESSEN T, NØRSKOV J K, CHRISTENSEN C H. CO methanation over supported bimetallic Ni-Fe catalysts:From computational studies towards catalyst optimization[J]. Appl Catal A:Gen, 2007,320:98-104. doi: 10.1016/j.apcata.2006.12.017

    10. [10]

      TANAKAA H, MISONOB M. Advances in designing perovskite catalysts[J]. Curr Opin Solid State Mater Sci, 2001,5:381-387. doi: 10.1016/S1359-0286(01)00035-3

    11. [11]

      SILVA C R B, DA CONCEICÃO L, RIBEIRO N F P, SOUZA M M V M. Partial oxidation of methane over Ni-Co perovskite catalysts[J]. Catal Commun, 2011,12(7):665-668. doi: 10.1016/j.catcom.2010.12.025

    12. [12]

      MANEERUNG T, HIDAJAT K, KAWI S. LaNiO3 perovskite catalyst precursor for rapid decomposition of methane:Influence of temperature and presence of H2 in feed stream[J]. Catal Today, 2011,171(1):24-35. doi: 10.1016/j.cattod.2011.03.080

    13. [13]

      LI S, TANG H, GONG D, MA Z, LIU Y. Loading Ni/La2O3 on SiO2 for CO methanation from syngas[J]. Catal Today, 2017,297:298-307. doi: 10.1016/j.cattod.2017.06.014

    14. [14]

      GALLEGO G N S, BATIOT-DUPEYRAT C, BARRAULT J L, FLOREZ E, MONDRAGO'N F. Dry reforming of methane over LaNi1-yByOδ (B=Mg, Co) perovskites used as catalyst precursor[J]. Appl Catal A:Gen, 2008,334(1/2):251-258.  

    15. [15]

      LI C, ZHOU G, WANG L, DONG S, LI J, CHENG T. Effect of ceria on the MgO-γ-Al2O3 supported CeO2/CuCl2/KCl catalysts for ethane oxychlorination[J]. Appl Catal A:Gen, 2011,400(1/2):104-110.  

    16. [16]

      TOUAHRA F, CHEBOUT R, LERARI D, HALLICHE D, BACHARI K. Role of the nanoparticles of Cu-Co alloy derived from perovskite in dry reforming of methane[J]. Energy, 2019,171:465-474. doi: 10.1016/j.energy.2019.01.085

    17. [17]

      ZHONG S, SUN Y, XIN H, YANG C, CHEN L, LI X. NO oxidation over Ni-Co perovskite catalysts[J]. Chem Eng J, 2015,275:351-356. doi: 10.1016/j.cej.2015.04.046

    18. [18]

      RAMESH S, YANG E H, JUNG J S, MOON D J. Copper decorated perovskite an efficient catalyst for low temperature hydrogen production by steam reforming of glycerol[J]. Int J Hydrogen Energy, 2015,40(35):11428-11435. doi: 10.1016/j.ijhydene.2015.02.013

    19. [19]

      DE IMA LS M, DA SILVA A M, DA COSTA L O O, ASSAF J M, JACOBS G, DAVIS B H, MATTOS L V, NORONHA F B. Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol[J]. Appl Catal A:Gen, 2010,377(1/2):181-190.  

    20. [20]

      LIU F, QU Y, YUE Y, LIU G, LIU Y. Nano bimetallic alloy of Ni-Co obtained from LaCoxNi1-xO3 and its catalytic performance for steam reforming of ethanol[J]. RSC Adv, 2015,5(22):16837-16846. doi: 10.1039/C4RA14131H

    21. [21]

      WANG Z, WANG C, CHEN S, LIU Y. Co-Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen[J]. Int J Hydrogen Energy, 2014,39(11):5644-5652. doi: 10.1016/j.ijhydene.2014.01.151

    22. [22]

      MEERTEN R Z C V, BEAUMONT A H G M, NISSELROOIJ P F M T V, COENEN J W E. Structure sensitivity and crystallite size change of nickel during methanantion of CO/H2 on Nickel-Silica catalysts[J]. Surf Sci, 1983,135:565-579. doi: 10.1016/0039-6028(83)90242-X

    23. [23]

      O S, YAN J, WANG H, WANG Z, JIANG Q. Ni/La2O3 catalyst containing low content platinum-rhodium for the dehydrogenation of N2H4·H2O at room temperature[J]. J Power Sources, 2014,262:386-390. doi: 10.1016/j.jpowsour.2014.03.059

    24. [24]

      ZHI G, GUO X, WANG Y, JIN G, GUO X. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011,16(1):56-59. doi: 10.1016/j.catcom.2011.08.037

    25. [25]

      BENJARAM M. REDDYA, BISWAJIT CHOWDHURY A, SMIRNIOTIS P G. An XPS study of La2O3 and In2O3 influence on the physicochemical properties of MoO3/TiO2 catalysts[J]. Appl Catal A:Gen, 2001,219:53-60. doi: 10.1016/S0926-860X(01)00658-5

    26. [26]

      LIU Xin-hua, MIAO Yin, LI Xiao-li, SHENG Shi-shan. The promoting effect of La2O3 on Ni/γ-Al2O3 methanation catalyst[J]. Acta Phys-Chim Sin, 1995,11(8):746-750. doi: 10.3866/PKU.WHXB19950816

    27. [27]

      MAO M, XU J, LI L, ZHAO S, LI X, LI Y, LIU Z. High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light[J]. Ionics, 2019,25(10):4533-4546. doi: 10.1007/s11581-019-03210-2

    28. [28]

      MCINTYRE N S, JOHNSTON D D, COATSWORTH L L, DAVIDSON R D, BROWN J R. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum[J]. Surf Interface Anal, 1990,15:265-272. doi: 10.1002/sia.740150406

    29. [29]

      KLEIN J C, HERCULES D M. Surface characterization of model urushibara catalysts[J]. J Catal, 1983,82:424-441. doi: 10.1016/0021-9517(83)90209-9

    30. [30]

      LIU Q, TIAN Y, AI H. Methanation of carbon monoxide on ordered mesoporous NiO-TiO2-Al2O3 composite oxides[J]. RSC Adv, 2016,6(25):20971-20978. doi: 10.1039/C6RA00392C

    31. [31]

      WAGNER C D. Chemical shifts of auger lines, and the auger parameter[J]. Faraday Discuss Chem Soc, 1975,60:291-300. doi: 10.1039/dc9756000291

    32. [32]

      CHAPMAN D. Electronegativity and the stability of metal complexes[J]. Nature, 1954,174:887-888. doi: 10.1038/174887a0

    33. [33]

      LOUZGUINE D V, INOUE A. Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses[J]. Appl Phys Lett, 2001,79(21):3410-3412. doi: 10.1063/1.1420781

    34. [34]

      ARANDIYAN H, KASAEIAN G, NEMATOLLAHI B, WANG Y, SUN H, BARTLETT S, DAI H, REZAEI M. Self-assembly of flower-like LaNiAlO3-supported nickel catalysts for CO methanation[J]. Catal Commun, 2018,115:40-44. doi: 10.1016/j.catcom.2018.07.001

    35. [35]

      OKAMOTO Y, FUKINO K, IMANAKA T, TERANISHI S. Surface state and catalytic activity and selectivity of nickel catalysts in hydrogenation reactions[J]. J Catal, 1982,74:173-182. doi: 10.1016/0021-9517(82)90020-3

    36. [36]

      ZENG Y, MA H, ZHANG H, YING W, FANG D. Highly efficient NiAl2O4 -free Ni/γ-Al2O3 catalysts prepared by solution combustion method for CO methanation[J]. Fuel, 2014,137:155-163. doi: 10.1016/j.fuel.2014.08.003

    37. [37]

      TEJUCA L G, FIERRO J L G. XPS and TPD probe techniques for the study of LaNiO3 perovskite oxide[J]. Thermochim Acta, 1989,147(2):361-375. doi: 10.1016/0040-6031(89)85191-3

    38. [38]

      SAW E T, OEMAR U, TAN X R, DU Y, BORGNA A, HIDAJAT K, KAWI S. Bimetallic Ni-Cu catalyst supported on CeO2 for high-temperature water-gas shift reaction:Methane suppression via enhanced CO adsorption[J]. J Catal, 2014,314:32-46. doi: 10.1016/j.jcat.2014.03.015

    39. [39]

      YU Y, JIN G, WANG Y, GUO X. Synthesis of natural gas from CO methanation over SiC supported Ni-Co bimetallic catalysts[J]. Catal Commun, 2013,31:5-10. doi: 10.1016/j.catcom.2012.11.005

    40. [40]

      LIU J, CAO A, SI J, ZHANG L, HAO Q, LIU Y. Nanoparticles of Ni-Co alloy derived from layered double hydroxides and their catalytic performance for CO methanation[J]. NANO, 2016,11(10)1650118. doi: 10.1142/S1793292016501186

    41. [41]

      TAVARES M T, ALSTRUP I, BERNARDO C A A. Coking and decoking during methanation and methane decomposition on Ni-Cu supported catalysts[J]. Mater Corros, 1999,50:681-685. doi: 10.1002/(SICI)1521-4176(199912)50:12<681::AID-MACO681>3.0.CO;2-5

    42. [42]

      KANG N, YANG Q, AN K, LI S, ZHANG L, LIU Y. Mixed oxides of La-Ga-O modified Co/ZrO2 for higher alcohols synthesis from syngas[J]. Catal Today, 2019,330:46-53. doi: 10.1016/j.cattod.2018.01.034

    43. [43]

      SAN JOSÉ ALONSO D, JUAN-JUAN J, ILLÁN-GÓMEZ M J, ROMÁN-MARTÍNEZ M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane[J]. Appl Catal A:Gen, 2009,371(1/2):54-59. doi: 10.1016/j.apcata.2009.09.026

    44. [44]

      MA S, TAN Y, HAN Y. Methanation of syngas over coral reef-like Ni/Al2O3 catalysts[J]. J Nat Gas Chem, 2011,20(4):435-440. doi: 10.1016/S1003-9953(10)60192-2

    45. [45]

      ESTEPHANE J, AOUAD S, HANY S, EL KHOURY B, GENNEQUIN C, EL ZAKHEM H, EL NAKAT J, ABOUKAÏS A, ABI AAD E. CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study[J]. Int J Hydrogen Energy, 2015,40(30):9201-9208. doi: 10.1016/j.ijhydene.2015.05.147

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

Metrics
  • PDF Downloads(17)
  • Abstract views(1305)
  • HTML views(380)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return