Citation: LI Hai-jie, LI Xiao-hong, FENG Jie, LI Wen-ying. Effect of preheating treatment on oxygen migration during lignite pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 1-7. shu

Effect of preheating treatment on oxygen migration during lignite pyrolysis

  • Corresponding author: FENG Jie, fengjie@tyut.edu.cn
  • Received Date: 9 August 2018
    Revised Date: 1 October 2018

    Fund Project: the National Natural Science Foundation Youth Project 21706174Key Projects supported by the National Natural Science Foundation of China U1361202The project was supported by the National Key Research and Development Program of China (2016YFB0600305) and Key Projects supported by the National Natural Science Foundation of China (U1610221, U1361202) and the National Natural Science Foundation Youth Project (21706174)the National Key Research and Development Program of China 2016YFB0600305Key Projects supported by the National Natural Science Foundation of China U1610221

Figures(9)

  • The effect of preheating treatment (140-230 ℃) on the oxygen migration rule of Hulunbuir lignite which is pyrolyzed at 650 ℃ has been discussed by using the proximate and ultimate analyses, the Fourier transform-infrared spectroscopy, and the gas chromatography-mass spectrometry analysis. Results show that the amount of oxygen migrated to the pyrolysis water and semi-coke is decreased by 7.55% and 1.43%, respectively due to the effect of preheating at 200 ℃. Furthermore, the amount of oxygen transferred to tar and gas is increased by 6.66% and 1.61% respectively, and phenolic oxygen in tar is getting doubled. The decrease of hydrogen bonding and the increase of phenolic compounds are noted as the result of preheating process of lignite, as evidenced by in-situ infrared diffuse reflectance spectroscopy, this could be due to the dissociation of OH…π, OH…N bonds. Hydroxyl self-association hydrogen bonds have also broken down and transformed during the preheating process with the formation of free OH·, which result in the increase of phenol and cresol contents.
  • 加载中
    1. [1]

      DENG J, ZHAO J Y, XIAO Y, ZHANG Y N, HUANG A C, SHU C M. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal[J]. J Therm Anal Calorim, 2017,129(3):1779-1786. doi: 10.1007/s10973-017-6331-3

    2. [2]

      YE C P, HUANG H J, LI X H, LI W Y, FENG J. The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes[J]. Fuel, 2017,207:85-92. doi: 10.1016/j.fuel.2017.06.062

    3. [3]

      FENG X B, CAO J P, ZHAO X Y, SONG C, LIU T L, WANG J X, FAN X, WEI X Y. Organic oxygen transformation during pyrolysis of Baiyinhua lignite[J]. J Anal Appl Pyrolsis, 2015,117:106-115.  

    4. [4]

      WANG Z B, WANG C, KANG R N, BIN F, WEI X L. Deoxygenation of Chinese long-flame coal in low-temperature pyrolysis[J]. J Therm Anal Calorim, 2017,131(3):3025-3033.  

    5. [5]

      MOCHIZUKI Y, NAGANUMA R, TSUBOUCHI N. Influence of inherently-present oxygen-functional groups on coal fluidity and coke strength[J]. Energy Fuels, 2018,32(2):1657-1664.  

    6. [6]

      SUN M, MA X X, YAO Q X, YAO Q X, WANG R C, MA Y X, FENG G, SHANG J X, XU L, YANG Y H. GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar[J]. Energy Fuels, 2011,25(3):1140-1145. doi: 10.1021/ef101610z

    7. [7]

      HUANG X, CAO J P, SHI P, ZHAO X Y, FENG X B, ZHAO Y P, FAN X, WEI X Y, TAKARADA T. Influences of pyrolysis conditions in the production and chemical composition of the bio-oils from fast pyrolysis of sewage sludge[J]. J Anal Appl Pyrolysis, 2014,110:353-362. doi: 10.1016/j.jaap.2014.10.003

    8. [8]

      KONG Jiao. Law of phenolic compounds formation in coal pyrolysis[D].Taiyuan: Taiyuan University of Technology, 2013. 

    9. [9]

      TAO Jian-hong. Determination and study of oxygen functional groups in lignite[J]. Henan Chem Ind, 2010,27(8):8-10. doi: 10.3969/j.issn.1003-3467.2010.08.006

    10. [10]

      SOLOMON P R, SERIO M A, DESPANDE G V, KROO E. Cross-linking reactions during coal conversion[J]. Energy Fuels, 1990,4(1):42-54.  

    11. [11]

      ZENG C, WU H, HAYASHI J, LI C. Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal[J]. Fuel, 2005,84(12):1586-1592.  

    12. [12]

      WANG Zhi-qing, BAI Zong-qing, LI Wen, LI Bao-qing, CHEN Hao-kan. Study on inhibition of crosslinking reaction during coal pyrolysis by pyridine pretreatment[J]. J Fuel Chem Technol, 2008,36(6):642-644.  

    13. [13]

      WANG Zhi-cai, PAN Chun-xiu, REN Shi-biao, LEI Zhi-ping, WANG Xiao-ling, SHUI Heng-fu. Heat treatment and hydrothermal treatment of Xianfeng lignite[J]. J Fuel Chem Technol, 2015,43(9):1033-1037.  

    14. [14]

      LI Wen, LI Dong-tao, CHEN Hao-kan, LI Bao-qing. Effects of o-alkylation on hydrogen bond and pyrolysis properties in coal[J]. J Fuel Chem Technol, 2003,31(6):514-518.  

    15. [15]

      MIURA K, MAE K, SAKURADA K, HASHWIOTO K. Hash pyrolysis of coal following thermal pretreatment at low-temperature[J]. Energy Fuels, 1992,6(1):16-21.  

    16. [16]

      ALLARDICE D J. The Science of Victorian Brown Coal[M]. Oxford:Butterworth-Heinemann, 1991:103-150.

    17. [17]

      MIURA K, MAE K, LI W, KUSAKAWA T, MOROZUMI F, KUMAMO A. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J]. Energy Fuels, 2001,15(3):599-610.  

    18. [18]

      SCHAFER H N S. Determination of carboxyl groups in low rank coal[J]. Fuel, 1984,63(5):723-726. doi: 10.1016/0016-2361(84)90178-9

    19. [19]

      DONG Peng-wei, YUE Jun-rong, GAO Shi-qiu, XU Guang-wen. Effect of thermal pretreatment on pyrolysis behavior of lignite[J]. J Fuel Chem Technol, 2012,40(8):898-905.  

    20. [20]

      CAO J P, SHI P, ZHAO X Y, WEI X Y, TAKARADA T. Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst[J]. Fuel Process Technol, 2014,123(7):34-40.  

    21. [21]

      PLATONOV V V, POLOVETSKYAYA O S, PROSKURYAKOV V A, SHAVYRINA O V. Pyrolysis kinetics of phenols from lignite semicoking tar[J]. Russ J Appl Chem, 2002,75(11):1878-1882. doi: 10.1023/A:1022295027623

    22. [22]

      GENG C C, LI S Y, MA Y, YUE C T, HE J L, SHANG W L. Analysis and identification of oxygen compounds in longkou shale oil and shenmu coal tar[J]. Oil Share, 2012,29(4)322.  

    23. [23]

      YANI S, ZHANG D. An experimental study of sulphate transformation during pyrolysis of an Australian lignite[J]. Fuel Process Technol, 2010,91(3):313-321. doi: 10.1016/j.fuproc.2009.11.002

    24. [24]

      ZOU L, JIN L J, LI Y, ZHU S W, HU H Q. Effect of tetrahydrofuran extraction on lignite pyrolysis under nitrogen[J]. J Anal Appl Pyrolysis, 2015,112:113-120. doi: 10.1016/j.jaap.2015.02.010

    25. [25]

      LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015,153:176-182. doi: 10.1016/j.fuel.2015.02.117

    26. [26]

      LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007,86(12):1664-1683.  

    27. [27]

      FILLO J P. An understanding of phenolic compound production in coal gasification processing[D]. Pittsburgh: Carnegie Mellon University, 1979.

    28. [28]

      XIE Tong-ying. Study on pyrolysis and distribution of phenolic compounds from Baiyinhua lignite[D]. Dalian: Dalian University of Technology, 2008. 

    29. [29]

      HUGGINS C M, PIMENTEL G C. Systematics of the infrared spectral properties of hydrogen bonding systems:Frequency shift, half width and intensity[J]. J Phys Chem, 2002,60(12):55-57.  

    30. [30]

      PAINTER P C, SOBKOWIAK M, YOUTCHEFF J. FT-IR study of hydrogen bonding in coal[J]. Fuel, 1987,66(7):973-978. doi: 10.1016/0016-2361(87)90338-3

    31. [31]

      FULLER E L, SMYRL N R. Chemistry and structure of coals:Hydrogen bonding structures evaluated by diffuse reflectance infrared spectroscopy[J]. Appl Spectrosc, 1990,44(3):451-461.  

    32. [32]

      CHEN C, JINSHENG GAO A, YAN Y. Observation of the type of hydrogen bonds in coal by FT-IR[J]. Energy Fuels, 1998,12(3):446-449. doi: 10.1021/ef970100z

    33. [33]

      CHEN Chong, XU Xue-min, GAO Jin-sheng, YAN Yong-jie, LI Wei, GUO Xin-wen. Study on hydrogen bond type in coal[J]. J Fuel Chem Technol, 1998,26(2):141-144.  

    34. [34]

      SOLOMON P R, HAMBLEN D G, CARANGELO R M. Applications of fourier transform IR spectroscopy in fuel science[C]//Coal and Coal Products: Analytical characterization techniques. Washington: American Chemical Society, 1982. 

    35. [35]

      YVRVM Y, ALTUNTA Ç N. Air oxidation of Beypazari lignite at 50℃, 100℃and 150℃[J]. Fuel, 1998,77(15):1809-1814. doi: 10.1016/S0016-2361(98)00067-2

  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    3. [3]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    4. [4]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    5. [5]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    6. [6]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    7. [7]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    8. [8]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    11. [11]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    12. [12]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    13. [13]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    17. [17]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    20. [20]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(7)
  • Abstract views(2724)
  • HTML views(219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return