Citation: Jing Sun, Xiaoyun Lu, Haiou Song, Qimeng Li, Shupeng Zhang, Aimin Li. Design of Capacitive Deionization Electrode with Insertion of Anions and Cations[J]. Chemistry, ;2021, 84(5): 402-410. shu

Design of Capacitive Deionization Electrode with Insertion of Anions and Cations

Figures(4)

  • The ions intercalation capacitive deionization (CDI) electrode materials with ions embedding/de-embedding ability have become a new type of CDI electrode with high specific capacity, which can effectively improve the shortcomings of limited ions storage capacity and easy corrosion on traditional carbon electrode. Based on the classification of metal oxide, Mxenes, NASICON type phosphate materials, the design of representative electrode materials depend on ions embedding/de-embedding and their application in CDI in recent years are reviewed in this paper in order to understand the structure-activity relationship and develop electrode materials with better performance.
  • 加载中
    1. [1]

      Elimelech M, Phillip W A. Science, 2011, 333(6043): 712~717. 

    2. [2]

      Ying P J, Li M, Yu F L, et al. ACS Appl. Mater. Interf., 2020, 12(29): 32880~32887. 

    3. [3]

      Geng Y, Sun W, Ying P J, et al. Adv. Funct. Mater., 2020, 2007648.

    4. [4]

      Liu Y, Gao X, Wang Z P, et al. Chem. Eng. J., 2021, 403: 126326. 

    5. [5]

      Nassrullah H, AnisS F, Hashaikeh R, et al. Desalination, 2020, 491: 114569. 

    6. [6]

      Karaghouli A A, Kazmerski L L. Renew. Sustain. Energy Rev., 2013, 24: 343~356. 

    7. [7]

      Mayor B. Desalination, 2019, 457: 75~84. 

    8. [8]

      Semiat R. Environ. Sci. Technol., 2008, 42(22): 8193~8201. 

    9. [9]

       

    10. [10]

      Han D C, Zhang C M, Guan J, et al. Electrochim. Acta, 2020, 336: 135639. 

    11. [11]

      Zhang H, Zhang W X, Shen J M, et al. Desalination, 2020, 473: 114173. 

    12. [12]

       

    13. [13]

      Vanysek P. CRC Hand Book of Chemistry and Physics, 1993: 5~92.

    14. [14]

      Li M, Park H G. ACS Appl. Mater. Interf., 2018, 10(3): 2442~2450. 

    15. [15]

      Porada S, Borchardt L, Oschatz M, et al. Energy Environ. Sci., 2013, 6(12): 3700~3712. 

    16. [16]

      Chen Z L, Zhang H T, Wu C X, et al. Desalination, 2018, 433: 68~74. 

    17. [17]

      Xu P, Drewes J E, Heil D, et al. Water Res., 2008, 42(10-11): 2605~2617. 

    18. [18]

      Kang J, Kim T Y, Jo K, et al. Desalination, 2014, 352: 52~57. 

    19. [19]

      Elisadiki J, Jande Y A C, Machunda R L, et al. Carbon, 2019, 147: 582~593. 

    20. [20]

      Korkmaz S, Kariper I A. J. Energy Storage, 2020, 27: 101038. 

    21. [21]

      Shi P F, Wang C, Sun J Y, et al. Sep. Purif. Technol., 2020, 235: 116196. 

    22. [22]

      Ding Z B, Xu X T, Li Y Q, et al. Desalination, 2019, 468: 114078. 

    23. [23]

      Pasta M, Wessells C D, Cui Y, et al. Nano Lett., 2012, 12(2): 839~843. 

    24. [24]

      Lee J, Kim S, Kim C, et al. Energy Environ. Sci., 2014, 7(11): 3683~3689. 

    25. [25]

      Chen F M, Huang Y X, Guo L, et al. Energy Environ. Sci., 2017, 10(10): 2081~2089. 

    26. [26]

      Suss M E, Presser V. Joule, 2018, 2(1): 10~15. 

    27. [27]

      Augustyn V, Simonbc P, Dunn B. Energy Environ. Sci., 2014, 7(5): 1597~1614. 

    28. [28]

      Jaoude M A, Alhseinat E, Polychronopoulou K, et al. Electrochim. Acta, 2020, 330: 135202. 

    29. [29]

      Hand S, Cusick R D. Environ. Sci. Technol., 2017, 51(20): 12027~12034. 

    30. [30]

      Tang Y J, Zheng S S, Xu Y X, et al. Energy Storage Mater., 2018, 12: 284~309. 

    31. [31]

      Devaraj S, Munichandraiah N. J. Phys. Chem. C, 2008, 112: 4406~4417. 

    32. [32]

       

    33. [33]

      Lee H Y, Goodenough J B. J. Solid State Chem., 1999, 144(1): 220~223. 

    34. [34]

      Toupin M, Brousse T, Bélanger D. Chem. Mater., 2004, 16(16): 3184~3190. 

    35. [35]

      Tan G C, Lu S D, Xu N, et al. Environ. Sci. Technol., 2020, 54(9): 5843~5852. 

    36. [36]

      Ma J, Cheng Y J, Wang L, et al. Chem. Eng. J., 2020, 384: 123329. 

    37. [37]

      Naguib M, Kurtoglu M, Presser V, et al. Adv. Mater., 2011, 23: 4248~4253. 

    38. [38]

      Malaki M, Maleki A, Varma R S. J. Mater. Chem. A, 2019, 7(18): 10843~10857. 

    39. [39]

      Srimuk P, Kaasik F, Krüner B, et al. J. Mater. Chem. A, 2016, 4(47): 18265~18271. 

    40. [40]

      Chen B B, Feng A H, Deng R X, et al. ACS Appl. Mater. Interf., 2020, 12(12): 13750~13758. 

    41. [41]

      Agartan L, Hantanasirisakul K, Buczek S, et al. Desalination, 2020, 477: 114267. 

    42. [42]

      Srimuk P, Halim J, Lee J H, et al. ACS Sustain. Chem. Eng., 2018, 6(3): 3739~3747. 

    43. [43]

      Srimuk P, Lee J H, Fleischmann S, et al. J. Mate. Chem. A, 2017, 5(30): 15640~15649. 

    44. [44]

      Tang W J, Wang X L, Xie D, et al. J. Mater. Chem. A, 2018, 6(37): 18318~18324. 

    45. [45]

      Han J L, Yan T T, Shen J J, et al. Environ. Sci. Technol., 2019, 53(21): 12668~12676. 

    46. [46]

      Peng W J, Wang W, Han G H, et al. Desalination, 2020, 473: 114191. 

    47. [47]

      Jia F F, Sun K G, Yang B Q, et al. Desalination, 2018, 446: 21~30. 

    48. [48]

      Yue Y F, Binder A J, Guo B K, et al. Angew. Chem. Int. Ed., 2014, 53: 3134~3137. 

    49. [49]

      You Y, Wu X L, Yin Y X, et al. Energy Environ. Sci., 2014, 7(5): 1643~1647. 

    50. [50]

      Qian J F, Wu C, Cao Y L, et al. Adv. Energy Mater., 2018, 8: 1702619. 

    51. [51]

      Wu XY, Wu C H, Wei C X, et al. ACS Appl. Mater. Interf., 2016, 8: 5393~5399. 

    52. [52]

      Lee J, Kim S, Yoon J. ACS Omega, 2017, 2(4): 1653~1659. 

    53. [53]

      Guo L, Mo R W, Shi W H, et al. Nanoscale, 2017, 9(35): 13305~13312. 

    54. [54]

      Vafakhah S, Guo L, Sriramulu D, et al. ACS Appl. Mater. Interf., 2019, 11: 5989~5998. 

    55. [55]

      Yu S C, Liu Z G, Tempel H, et al. J. Mater. Chem. A, 2018, 6(37): 18304~18317. 

    56. [56]

      Qiu S, Wu X Y, Wang M Y, et al. Nano Energy, 2019, 64: 103941. 

    57. [57]

      Li X N, Zhu X B, Liang J W, et al. J. Electrochem. Soc., 2014, 161(6): A1181~A1187.

    58. [58]

      Liu Z X, An Y F, Pang G, et al. Chem. Eng. J., 2018, 353: 814~823. 

    59. [59]

      Wang Q, Zhang M Y, Zhou C G, et al. J. Phys. Chem. C, 2018, 122(29): 16649~16654. 

    60. [60]

      Wang K, Liu Y, Ding Z B, et al. J. Mater. Chem. A, 2019, 7(19): 12126~12133. 

    61. [61]

      Huang Y X, Chen F M, Guo L, et al. J. Mater. Chem. A, 2017, 5(34): 18157~18165. 

    62. [62]

      Huang Y X, Chen F M, Guo L, et al. Desalination, 2019, 451: 241~247. 

    63. [63]

      Cao J L, Wang Y, Wang L, et al. Nano Lett., 2019, 19(2): 823~828. 

    64. [64]

      Fang J Q, Wang S Q, Li Z T, et al. J. Mater. Chem. A, 2016, 4(4): 1180~1185. 

    65. [65]

      Ko J S, Paul P P, Wan G, et al. Chem. Mater., 2020, 32(7): 3028~3035. 

    66. [66]

      Song W X, Ji X B, Wu Z P, et al. J. Mater. Chem. A, 2014, 2(15): 5358~5362. 

    67. [67]

      Zhao W Y, Guo L, Ding M, et al. ACS Appl. Mater. Interf., 2018, 10(47): 40540~40548. 

  • 加载中
    1. [1]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    2. [2]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    6. [6]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    7. [7]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    14. [14]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(30)
  • Abstract views(3370)
  • HTML views(583)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return