Citation: Wang Wenwen, Zhang Haifeng. Research Progress in the Influence of Iron with Different Valence on Membrane Bioreactor[J]. Chemistry, ;2017, 80(4): 356-360. shu

Research Progress in the Influence of Iron with Different Valence on Membrane Bioreactor

  • Received Date: 27 July 2016
    Accepted Date: 12 November 2016

Figures(1)

  • Membrane bioreactor (MBR) has received great attention in wastewater treatment for several years. However, the application of MBR is hindered by the membrane fouling which brings the decrease of permeation flux. It has been reported that membrane fouling can be reduced by iron-based coagulant. This article firstly summarized the effects of iron ion with different valence on the quality of MBR effluent. Then, the distribution and transformation of iron in sludge mixed liquor were analyzed. Moreover, the mechanisms of membrane fouling under the presence of iron ions with different valence were clarified. Finally, the future perspectives regarding the influence of iron ions on the performance of MBR were proposed.
  • 加载中
    1. [1]

      I S Chang, P L Chech, B Jefferson et al. J. Environ. Eng., 2002, 128(11): 1018~1029. 

    2. [2]

      L van Dijk, G C G Roncken. Water Sci. Technol., 1997, 35(10): 35~41. 

    3. [3]

      K Brindle, T Stephenson. Biotechnol. Bioeng., 1995, 49: 601~610.

    4. [4]

      S S Han, T H Bae, G G Jang et al. Proc. Biochem., 2005, 40(7): 2393~2400. 

    5. [5]

      Z Ahmed, J Cho, B R Lim et al. J. Membrane. Sci., 2007, 287(2): 211~218. 

    6. [6]

      F Meng, S R Chae, A Drews et al. Water Res., 2009, 43(6): 1489~1512. 

    7. [7]

      K G Song, Y Kim, K H Ahn. Desalination, 2008, 221(1~3): 467~474. 

    8. [8]

      D C Sobeck, M J Higgins. Water Res., 2002, 36: 527~538. 

    9. [9]

      H Li, Y Wen, A Cao et al. Bioresour. Technol., 2012, 114: 188~194. 

    10. [10]

    11. [11]

      Z Zhang, Y Wang, G L Leslie et al. Water Res., 2015, 69: 210~222. 

    12. [12]

      Y Wang, K H Tng, H Wu et al. Water Res., 2014, 57: 140~150. 

    13. [13]

      R J Banu, K U Do, I T Yeom. World. J. Microb. Biot., 2008, 24: 2981~2986. 

    14. [14]

      H F Zhang, B S Sun, X H Zhao et al. Sep. Purif. Technol., 2008, 63(2): 341~347. 

    15. [15]

      C De Gregorio, A H Caravelli, N E Zaritzky. Chem. Eng. J., 2010, 165: 607~616. 

    16. [16]

    17. [17]

      K U Do, R J Banu, D H Son et al. Biochem. Eng. J., 2012, 66: 20~26.

    18. [18]

    19. [19]

      X H Wang, J J Qian, X F Li et al. Desalination, 2012, 296:24~29. 

    20. [20]

      S Philips. Bioresour. Technol., 2003, 88(3): 229~239. 

    21. [21]

      I Oikonomidis, L J Burrows, C M Carliell-Marquet. J. Cheml. Technol. Biot., 2010, 85(8): 1067~1076. 

    22. [22]

       

    23. [23]

      H Wu, A Ikeda-Ohno, Y Wang et al. Water Res., 2015, 76: 213~226. 

    24. [24]

      T Clark, J E Burgess, T Stephenson et al. Proc. Saf. Environ., 2000, 78(5): 405~410. 

    25. [25]

      Y Wang, G L Leslie, T D Waite. Chem. Eng. J., 2014, 252: 239~248.

    26. [26]

      J M D Freitas, R Meneghini. Mutat. Res., 2001, 475: 153~159.

    27. [27]

       

    28. [28]

      X M Wang, T D Waite. Water Res., 2010, 44(11): 3511~3521. 

    29. [29]

      I Mishima, J Nakajima. Water Sci. Technol., 2009, 59(7): 1255~1262. 

    30. [30]

      M L Guerinot. Ann. Rev. Microbiol., 1994, 48: 743~772. 

    31. [31]

      H Rasmussen, P H Nielsen. Water Res., 1996, 30(3): 551~558. 

    32. [32]

      K A Weber, L A Achenbach, J D Coates. Nat. Rev. Microbiol., 2006, 4(10): 752~764. 

    33. [33]

      P H Nielsen. Water Sci. Tech., 1996, 34(5~6): 129~136. 

    34. [34]

      E Roden, J Zachara. Environ. Sci. Technol., 1996, 30: 1618~1628.

    35. [35]

      J M De Freitas, R Meneghini. Mutat. Res-Fund. Mol. M, 2001, 475: 153~159.

    36. [36]

       

    37. [37]

      C Julien, E Laurent, B Legube et al. Water Res., 2014, 50: 212~220. 

    38. [38]

       

    39. [39]

       

    40. [40]

      H Nagaoka, S Ueda, A Miya. Water Sci. Technol., 1996, 34(9): 165~172. 

    41. [41]

      C S Laspidou, B E Rittmann. Water Res., 2002, 36: 2711~2720. 

    42. [42]

      Z Geng, E R Hall. Water Res., 2007, 41(19): 4329~4338. 

    43. [43]

      H Li, Y Wen, A Cao et al. Water Res., 2014, 55: 225~232. 

    44. [44]

      H Dong, B Gao, Q Yue et al. Chem. Eng. J., 2014, 258: 442~449. 

    45. [45]

       

    46. [46]

      G D Bella, D D Trapani, M Torregrossa et al. Bioesour. Technol., 2013(147): 614~618. 

    47. [47]

      D W Gao, Z D Wen, B Li et al. Bioesour. Technol., 2014, 154: 87~93.

  • 加载中
    1. [1]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    2. [2]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    5. [5]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    6. [6]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    7. [7]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    8. [8]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    12. [12]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    13. [13]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Zijun Huang Feng Wu Shaofeng Pi Saijin Huang Zhengjun Fang . Knowledge Graph-based Development of AI Curriculum for Inorganic Chemistry Experiments and Exploration of New Teaching Paradigm. University Chemistry, 2025, 40(9): 228-237. doi: 10.12461/PKU.DXHX202504052

    17. [17]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    18. [18]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    19. [19]

      Dafa Chen Haiping Xia . From Pollutant to Metal-Centred Annulene: The Transformation Journey of a Little Osmium Atom. University Chemistry, 2025, 40(10): 156-160. doi: 10.12461/PKU.DXHX202508094

    20. [20]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

Metrics
  • PDF Downloads(8)
  • Abstract views(1452)
  • HTML views(369)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return