Citation: WANG Qing, LI Chu-an, PAN Shuo, JIANG Jia-qi. A molecular simulation study on the adsorption of CH4 and CO2 on the mineral substances in oil shale[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1310-1316. shu

A molecular simulation study on the adsorption of CH4 and CO2 on the mineral substances in oil shale

  • Corresponding author: WANG Qing, rlx888@126.com
  • Received Date: 7 June 2017
    Revised Date: 2 August 2017

    Fund Project: the National Natural Science Foundation of China 51276034the National Natural Science Foundation of China 51676032the Program for Changjiang Scholars and Innovative Research Team in University IRF17R19The project was supported by the National Natural Science Foundation of China (51676032, 51276034) and the Program for Changjiang Scholars and Innovative Research Team in University(IRF17R19)

Figures(4)

  • The models of montmorillonite, kaolinite, calcite and gypsum as the mineral substances in oil shale were built by using Materials Studio 2017 software; the adsorption of CH4 and CO2 on these mineral substances was then simulated by the GCMC and MD method. The results illustrated that the adsorption capacity of CH4 and CO2 on four mineral substances under the same temperature and pressure follows the order of montmorillonite > kaolinite > gypsum > calcite. The adsorption of single component CH4 and CO2 is in accordance with the Langmuir isotherm and the adsorption heats for both CH4 and CO2 on four mineral models all are less than 42 kJ/mol, suggesting that the adsorption belongs to physical category. With the increase of temperature, both the adsorption capacity and adsorption heat are reduced; there is a positive correlation between the adsorption heat and adsorption capacity for the CH4 and CO2 molecules.
  • 加载中
    1. [1]

      DENG S, WANG Z, GU Q. Extracting hydrocarbons from Huadian oil shale by sub-critical water[J]. Fuel Process Technol, 2011,92(5):1062-1067. doi: 10.1016/j.fuproc.2011.01.001

    2. [2]

      YAO Zong-hui, ZHANG Ming-shan, ZENG Ling-bang. Analysis of the faults in the northern Ordos Basin[J]. Petrol Explor Dev, 2003,30(2):20-23.  

    3. [3]

      QIAN Jia-lin, WANG Jian-qiu, LI Shu-yuan. World oil shale[J]. Energy China, 2006,28(8):16-19.  

    4. [4]

      ZOU Yong-wen. Study on the basic characteristics of the Huadian oil shales and their semi-cokes[D]. Jilin:Northeast Electric Power University, 2010. 

    5. [5]

      JI Li-ming, QIU Jun-li, ZHANG Tong-wei. Experiments on methane adsorption of common clay minerals in shale[J]. Earth Sci:J China Univ Geosci, 2012,37(5):1043-1050.  

    6. [6]

      JI Li-ming, QIU Jun-li, XIA Yan-qing. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Pet Sin, 2012,33(2):249-256. doi: 10.7623/syxb201202009

    7. [7]

      SUN Ren-yuan, ZHANG Yun-fei, FAN Kun-kun. Molecular simulations of adsorption characteristics of clay minerals in shale[J]. J Chem Ind Eng, 2015,66(6):2118-2122.  

    8. [8]

      HOU Xin-juan, YANG Jian-li, LI Yong-wang. Quantum chemistry study on coal molecular structure[J]. J Fuel Chem Technol, 1999,27(s1):143-149.  

    9. [9]

      YANG X, ZHANG C. Structure and diffusion behavior of dense carbon dioxide fluid in clay-like slit pores by molecular dynamics simulation[J]. Chem Phys Lett, 2005,407(4):427-432.

    10. [10]

      RU-Xin. Study on the experiment and molecular simulation of oil shale pyrolysis[D]. Jilin:Jilin University, 2013.

    11. [11]

      WANG Mao-zhen, LIU Shao-bo, REN Yong-jun. Pore characteristics and methane adsorption of clay minerals in Shale gas reservoir[J]. Geol Rev, 2015,61(1):207-216.  

    12. [12]

      JIN Z, FIROOZABADI A. Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations[J]. Fluid Phase Equilib, 2013,360(1):456-465.

    13. [13]

      SKIPPER N T. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. methodology[J]. Clays Clay Miner, 1995,43(3):285-293. doi: 10.1346/CCMN

    14. [14]

      LEVY J H, DAY S J, KILLINGLEY J S. Methane capacities of Bowen Basin coals related to coal properties[J]. Fuel, 1997,76(9):813-819. doi: 10.1016/S0016-2361(97)00078-1

    15. [15]

      ASTASHOV A V, BELYI A A, BUNIN A V. Quasi-equilibrium swelling and structural parameters of coals[J]. Fuel, 2008,87(15/16):3455-3461.  

    16. [16]

      LIU Y, WILCOX J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons[J]. Environ Sci Technol, 2012,46(3)1940. doi: 10.1021/es204071g

    17. [17]

      WANG Qin, SUN Bin, LIU Hong-peng. Analysis of mineral behavior during pyrolysis of oil shale[J]. J Fuel Chem Technol, 2013,41(2):163-168.  

    18. [18]

      JI L, ZHANG T, MILLIKEN K L. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Appl Geochem, 2012,27(12):2533-2545. doi: 10.1016/j.apgeochem.2012.08.027

    19. [19]

      ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Mar Petrol Geol, 2009,26(6):916-927. doi: 10.1016/j.marpetgeo.2008.06.004

    20. [20]

      BUSTIN R M, CLARKSON C R. Geological controls on coalbed methane reservoir capacity and gas content[J]. Int J Coal Geol, 1998,38(66):3-26.  

    21. [21]

      KROOSS B M, BERGEN F V, GENSTERBLUM Y. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. Int J Coal Geol, 2002,51(2):69-92. doi: 10.1016/S0166-5162(02)00078-2

    22. [22]

      MASTALERZ M, GLUSKOTER H, RUPP J. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA[J]. Int J Coal Geol, 2004,60(1):43-55. doi: 10.1016/j.coal.2004.04.001

    23. [23]

      NODZEŃSKI A. Sorption and desorption of gases (CH4, CO2) on hard coal and active carbon at elevated pressures[J]. Fuel, 1998,77(11):1243-1246. doi: 10.1016/S0016-2361(98)00022-2

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(8)
  • Abstract views(1656)
  • HTML views(270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return