Citation: LI Bing-zheng, WU Hui-yuan, YANG Ying-chao, QIAO Xue-zhu, XUE Yong-bing, ZHENG Wei, ZHANG Chan, SUN De-kui. Adsorptive behaviors of phenol in water by MWCNT modified by ZnCl2, KOH and HNO3[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 761-768. shu

Adsorptive behaviors of phenol in water by MWCNT modified by ZnCl2, KOH and HNO3

  • Corresponding author: LI Bing-zheng, lbzh2001@163.com
  • Received Date: 10 February 2020
    Revised Date: 22 May 2020

    Fund Project: The project was supported by the Research Project Supported by Shanxi Scholarship Council of China (2014-059) and the Doctorate Science Fund of Taiyuan University of Science & Technology (20182057)the Research Project Supported by Shanxi Scholarship Council of China 2014-059the Doctorate Science Fund of Taiyuan University of Science & Technology 20182057

Figures(8)

  • The texture and surface chemistry of carbon nanotubes before and after chemical treatment using ZnCl2, KOH and HNO3 were determined by scanning electronic microscope, X-ray diffraction, N2 adsorption, and Boehm titration; and the effect of adsorptive conditions (contact time, initial concentration and temperature) on phenol removal and the thermodynamic and kinetic behavior and adsorption mechanism were investigated by tests and data fitting with three kinetic models (pseudo-first order, pseudo-second order and the Elovich kinetic equations) as well as thermodynamic equation. The results show that the treatment by HNO3, ZnCl2 or KOH less changes the BET surface area of carbon nanotubes, but obviously changes the surface chemical property. Specifically, the treatment by HNO3 obviously enhances surface acidic groups and slightly increases basic groups, whereas the treatment by ZnCl2 or KOH greatly decreases surface carboxyl groups and lactonic groups but obviously increases surface basic groups, which affects the phenol removal by carbon nanotubes. It is found that the phenol removal by carbon nanotubes treated with ZnCl2 or KOH increases due to a decrease in surface carboxyl groups of carbon nanotubes, but HNO3 treatment slightly reduces the phenol removal possibly because the adsorption is influenced by both structure and surface chemical property. Moreover, the adsorption of phenol by carbon nanotubes is spontaneous, exothermic and physically controlled, and the adsorption process of phenol by carbon nanotubes complies with the pseudo-second order equation.
  • 加载中
    1. [1]

      PRUDEN B B, LE H. Wet air oxidation of soluble components in wastewater[J]. Can J Chem Eng, 1976,54(4):319-325.  

    2. [2]

      BANAT F, ALBASHIR B, ALASHEH S, HAYAJNEH O. Adsorption of phenol by bentonite[J]. Environ Pollut, 2000,107(3):391-398.  

    3. [3]

      LORENCGRABOWSKA E, DIEZ M A, GRYGLEWICZ G. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons[J]. J Colloid Interf Sci, 2016,469:205-212.  

    4. [4]

      GORBACH A, STEGMAIER M, EIGENBERGER G. Measurement and modeling of water vapor adsorption on zeolite 4A-equilibria and kinetics[J]. Adsorption, 2004,10(1):29-46.  

    5. [5]

      LI W, YAN J, YAN Z, SONG Y, JIAO W, QI G, LIU Y. Adsorption of phenol by activated carbon in rotating packed bed:Experiment and modeling[J]. Appl Therm Eng, 2018,142:760-766.  

    6. [6]

      FIERRO V, TORNÉ-FERNÁNDEZ V, MONTANÉ D, CELZARD A. Adsorption of phenol onto activated carbons having different textural and surface properties[J]. Microporous Mesorporpus Mater, 2008,111(1/3):276-284.  

    7. [7]

      LI B, SUN K, GUO Y, TIAN J, XUE Y, SUN D. Adsorption kinetics of phenol from water on Fe/AC[J]. Fuel, 2013,110:99-106.  

    8. [8]

      LI B, LEI Z, ZHANG X, HUANG Z. Adsorption of simple aromatics from aqueous solutions on modified activated carbon fiber[J]. Catal Today, 2010,158(3/4):515-520.  

    9. [9]

      ZHANG Xue, CHUI Chun-yue, YANG Wen-fang, WANG Jin, WANG Ying. Adsorption and regeneration of pentachlorophenol by different microstructure carbon nanotubes[J]. Technol Water Treat, 2019,45(11):50-54.

    10. [10]

      YAO Xia-yan, LU Xing-wu, CHENG Liang, ZHANG En-yu. Influence of magnetic field on adsorption of phenol by NH2-SH-MWCNTs composite[J]. New Chem Mater, 2019,47(1):189-193.  

    11. [11]

      WANG Ke, LI Hong-yu, REN Hua-tang, XIA Jian-xin, XING Xuan, ZHANG Jing, MA Yi-bo, SHI Lei. Adsorption of MWCNTs for typical phenolic compounds in water[J]. Ind Water Treat, 2018,38(11):40-44.  

    12. [12]

      HAN Dao-li, ZHAO Yuan-li, ZHU Shuang-mei, LI Hua-yang, LIANG Er-jun. Studies on adsorption of P-nitrophenol on multi-wall carbon nanotubes after concentrated nitric acid treatment[J]. J Light Scattering, 2006,18(4):319-322.  

    13. [13]

      MATTSON J A, MARK J H B, MALBIN M D, WEBER J W J. Surface chemistry of active carbon:Specific adsorption of phenols[J]. J Colloid Interf Sci, 1969,31(1):116-130.  

    14. [14]

      BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994,32(5):759-769.  

    15. [15]

      SHARMA V K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-A Review[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2009,44(14):1485-1495.  

    16. [16]

      VILLACAÑAS F, PEREIRA M F R, ÓRFÃO J J M, FIGUEIREDO J L. Adsorption of simple aromatic compounds on activated carbons[J]. J Colloid Interface Sci, 2006,293(1):128-136.  

    17. [17]

      JEAN-PIERRE S. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics[J]. Chem Eng J, 2016,300:254-263.  

    18. [18]

      HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochem, 1999,34(5):451-465.  

    19. [19]

      CHIEN S H, CLAYTON W R. Application of elovich equation to the kinetics of phosphate release and sorption in soils[J]. Soil Sci Soc Am J, 1980,44(2):265-268.  

    20. [20]

      FU Xian-cai, SHENG Wen-xia, YAO Tian-yang. Physical Chemistry[M]. 5th ed. Beijing:Higher Education Press, 2006.

    21. [21]

      LI Ai-min, ZHANG Quan-xing, LI Fu-qiang, FEI Zheng-hao, WANG Xu-jiang, CHEN Jin-long. Thermodynamic study of adsorption of phenolic compounds on a phenol hydroxyl modified polystyrene[J]. Ion Exchange Adsorption, 2001,17(6):515-525.

    22. [22]

      DUAN Jia-tie, XU Man-cai, LI Hai-tao, SHI Zuo-qing, He Bing-lin. Synthesis of oxidized teritamine resin and its adsorption property for phenol[J]. Ion Exchange Adsorption, 2004,20(1):40-45.  

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

Metrics
  • PDF Downloads(6)
  • Abstract views(340)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return