Citation: Shixian Xu, Yina Wan. Synthesis of Covalent Organic Frameworks and Their Applications in Gas Adsorption Storage[J]. Chemistry, ;2021, 84(2): 149-153, 166. shu

Synthesis of Covalent Organic Frameworks and Their Applications in Gas Adsorption Storage

  • Corresponding author: Shixian Xu, xvshixian@163.com
  • Received Date: 31 July 2020
    Accepted Date: 8 September 2020

Figures(2)

  • Covalent organic frameworks (COFs) are a new type of nanostructure materials, which have attracted much attention due to their unique properties. COFs with high crystallinity, adjustable pore size, large specific surface area, good oxidation resistance and unique molecular structure, have been widely used in energy and environment aspects. COFs materials have high economic benefits, which urge people to study their basic properties and regulate their structure and function to improve their performance. Through the designability of COFs, on-demand synthesized structure-performance related materials are ideal candidate materials to solve the persistent challenges of sustainable energy and environment (such as gas storage, gas separation, catalysis, environmental remediation and chemical sensing).
  • 加载中
    1. [1]

      Cote A P, Benin A I, Ockwig N W, et al. Science, 2005, 310(5751): 1166~1170.

    2. [2]

      Ei-Kaderi H M, Hunt J R, Mendoza-Cortes J L, et al. Science, 2007, 316(5822): 268~272.

    3. [3]

      Uribe-Romo F J, Hunt J R, Furukawa H, et al. J. Am. Chem. Soc., 2009, 131(13): 4570~4571.

    4. [4]

      Lin G, Ding H, Yuan D, et al. J. Am. Chem. Soc., 2016, 138(10): 3302~3305.

    5. [5]

      Lan Y, Han X, Tong M, et al. Nat. Commun., 2018, 9(1): 5274~5284.

    6. [6]

      Yahiaoui O, Fitch A N, Hoffmann F, et al. J. Am. Chem. Soc., 2018, 140(16): 5330~5333.

    7. [7]

      Zhang Y, Duan J, Ma D, et al. Angew. Chem, Int. Ed., 2017, 56(51): 16313~16317.

    8. [8]

      Han S S, Furukawa H, Yaghi O M, et al. J. Am. Chem. Soc., 2008, 130(35): 11580~11581.

    9. [9]

      (a) Zeng Y, Zou R, Luo Z, et al. J. Am. Chem. Soc., 2015, 137(3): 1020~1023; (b) Zhou T Y, Xu S Q, Wen Q, et al. J. Am. Chem. Soc., 2014, 136(45): 15885~15888.

    10. [10]

      (a) Tan J, Namuangruk S, Kong W, et al. Angew. Chem. Int. Ed., 2016, 55(45): 13979~13984; (b) Wu C, Liu Y, Liu H, et al. J. Am. Chem. Soc., 2018, 140(31): 10016~10024; (c) Mellah A, Fernandes S P S, Rodriguez R, et al. Chem. Eur. J., 2018, 24(42): 10601~10605.

    11. [11]

      Campbell N L, Clowes R, Ritchie L K, et al. Chem. Mater., 2009, 21(2): 204~206.

    12. [12]

      Biswal B P, Chandr S, Kandambeth S, et al. J. Am. Chem. Soc., 2013, 135(14): 5328~5331.

    13. [13]

      Karak S, Kandambeth S, Biswal B P, et al. J. Am. Chem. Soc., 2017, 139(5): 1856~1862.

    14. [14]

      Jiang Y, Huang W, Wang J, et al. J. Mater. Chem. A, 2014, 2: 8201~8204.

    15. [15]

      Matsumoto M, Dasari R R, Ji W, et al. J. Am. Chem. Soc., 2017, 139(14): 4999~5002.

    16. [16]

      Matsumoto M, Valentino L, Stiehl G M, et al. Chem, 2018, 4(2): 308~317.

    17. [17]

      Guan X, Ma A, Li H, et al. J. Am. Chem. Soc., 2018, 140(13): 4494~4498.

    18. [18]

      Peng Y, Wong W K, Hu Z, et al. Chem. Mater., 2016, 28(14): 5095~5101.

    19. [19]

      Bisbey R P, Deblase C R, Smith B J, et al. J. Am. Chem. Soc., 2016, 138(36): 11433~11436.

    20. [20]

      Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131(25): 8875~8883.

    21. [21]

      (a) Gygi D, Bloch E D, Mason J A, et al. Chem. Mater., 2016, 28(4): 1128~1138; (b) Wong-Foy A G, Matzgera J, Yaghi O M. J. Am. Chem. Soc., 2006, 128(11): 3494~3495; (c) Kaye S S, Dailly A, Yaghi O M, et al. J. Am. Chem. Soc., 2007, 129(46): 14176~14177.

    22. [22]

      Doonan C J, Tranchemontagne D J, Glover T G. Nat. Chem., 2010, 2: 235~238.

    23. [23]

      Yang H, Kim I, Ko Y, et al. Appl. Chem. Eng., 2016, 27(3): 265~269.

    24. [24]

      Fan H, Mundstock A, Gu J, et al. J. Mater. Chem. A, 2018, 6: 16849~16853.

    25. [25]

      Nagai A, Guo Z, Feng X, et al. Nat. Commun., 2011, 2(1): 536.

    26. [26]

      Huang N, Krishna R, Jiang D, J. Am. Chem. Soc., 2015, 137(22): 7079~7082.

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    9. [9]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    10. [10]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    11. [11]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    14. [14]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    15. [15]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

Metrics
  • PDF Downloads(9)
  • Abstract views(553)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return