Citation: GUO Li-li, LIU Lu, ZHU Xiao-lin, ZHANG Qiang, LI Chun-yi. Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 723-730. shu

Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts

  • Corresponding author: LI Chun-yi, chuyli@upc.edu.cn
  • Received Date: 14 March 2017
    Revised Date: 17 April 2017

Figures(10)

  • A series of Ce-La/MgAl2O4-x catalysts were prepared by the incipient wetness impregnation method and characterized by BET, XRD, H2-TPR, CO-TPR and in situ FT-IR. The results demonstrate that the catalyst with a Mg/Al molar ratio of 0.5 yields the most uniform dispersion of CeO2 and greatly enhances formation of Ce-O-La solid solution, resulting in the increase of oxygen vacancy and surface Ce3+ content. Thereby, the synergistic effect between surface Ce3+ and oxygen vacancy gives rise to the best catalytic performance of NO reduction. Moreover, introduction of Mg species suppresses tranformation of CeO2 to Ce(SO4)2/Ce2(SO4)3 and then improves the SO2 resistance performance of Ce-La/MgAl2O4-0.5.
  • 加载中
    1. [1]

      CRUTZEN P J, BRVHL C. Catalysis by NOx as the main cause of the spring to fall stratospheric ozone decline in the northern hemisphere[J]. J Phys Chem A, 2001,105:1579-1582. doi: 10.1021/jp001984h

    2. [2]

      BABICH I V, SESHAN K, LEFFERTS L. Nature of nitrogen specie in coke and their role in NOx, formation during FCC catalyst regeneration[J]. Appl Catal B: Environ, 2005,59(3/4):205-211.

    3. [3]

      SCHMAL M, VANNICE M A, BALDANZA M A S. Pd-xMo/Al2O3 catalysts for NO reduction by CO[J]. J Catal, 1999,185:138-151. doi: 10.1006/jcat.1999.2465

    4. [4]

      SHIN H K, HIRABAYASHI H, YAHIRO H, WATANABE M. Selective catalytic reduction of no by ethene in excess oxygen over platinum ion-exchanged MFI zeolites[J]. Catal Today, 1995,26(1):13-21. doi: 10.1016/0920-5861(95)00125-Y

    5. [5]

      LIMA R K C D, BATISTA M S, WALLAU M, SANCHES E P. High specific surface area LaFeCo perovskites-synthesis by nanocasting and catalytic behavior in the reduction of NO with CO[J]. Appl Catal B: Environ, 2009,90(3):441-450.  

    6. [6]

      ILIEVA L, PANTALEO G, IVANOV I, VENEZIA A M. Gold catalysts supported on CeO2, and CeO2-Al2O3 for NOx reduction by CO[J]. Appl Catal B: Environ, 2006,65(1/2):101-109.

    7. [7]

      TROVARELLI A, LEITENBURG C D, BOARO M, DOLCETTI G. The utilization of ceria in industrial catalysis[J]. Catal Today, 1999,50(2):353-367. doi: 10.1016/S0920-5861(98)00515-X

    8. [8]

      KIM J R, MYEONG W J, IHM S K. Characteristics of CeO2-ZrO2, mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as support of Rh catalyst for catalytic reduction of NO by CO[J]. J Catal, 2009,263(1):123-133. doi: 10.1016/j.jcat.2009.02.001

    9. [9]

      BAIDYA T, GUPTA A, DESHPANDEY P A, MADRAS G, HEGDE M S. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. J Phys Chem C, 2009,113(10):4059-4068. doi: 10.1021/jp8060569

    10. [10]

      CHEN J, ZHU J, ZHAN Y, LIN X, CAI G, WEI K, ZHENG Q. Characterization and catalytic performance of Cu/CeO2 and Cu/MgO-CeO2 catalysts for NO reduction by CO[J]. Appl Catal A: Gen, 2009,363(1):208-215.

    11. [11]

      GAYEN A, BAIDYA T, RAMESH G S, SRIHARI R, HEGDE M S. Design and fabrication of an automated temperature programmed reaction system to evaluate 3-way catalysts Ce1-x-y(La/Y)xPtyO2-δ[J]. J Chem Sci, 2006,118(1):47-55. doi: 10.1007/BF02708765

    12. [12]

      ILIEVA L, PANTALEO G, IVANOV I, NEDYALKOVA R, VENEZIA A M. NO reduction by CO over gold based on ceria doped by rare earth metals[J]. Catal Today, 2008,139(3):168-173. doi: 10.1016/j.cattod.2008.06.033

    13. [13]

      BHATTACHARYYA A A, WOLTERMANN G M, JIN S Y, KARCH J A, CORMIER W E. Catalytic SOx abatement: The role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas[J]. Ind Eng Chem Res, 1988,27(8):1356-1360. doi: 10.1021/ie00080a004

    14. [14]

      FORNASARI G, TRIFIRÒF , VACCARI A, PRINETTO F, GHIOTTI G, CENTI G. Novel low temperature NOx, storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds[J]. Catal Today, 2002,75(1/4):421-429.

    15. [15]

      BOARO M, GIORDANO F, RECCHIA S, SANTO V D, GIONA M, TROVARELLI A. On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts[J]. Appl Catal B: Environ, 2004,52(3):225-237. doi: 10.1016/j.apcatb.2004.03.021

    16. [16]

      LI J, LUO G, CHU Y, WEI F. Experimental and modeling analysis of NO reduction by CO for a FCC regeneration process[J]. Chem Eng J, 2012,184(2):168-175.  

    17. [17]

      TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catal Rev, 1996,38(4):439-520. doi: 10.1080/01614949608006464

    18. [18]

      KUMAR P A, REDDY M P, HYUN-SOOK B, PHIL H H. Influence of Mg addition on the catalytic activity of alumina supported Ag for C3H6-SCR of NO[J]. Catal Lett, 2009,131(1):85-97.

    19. [19]

      DAMYANOVA S, PEREZ C A, SCHMAL M, BUENO J M C. Characterization of ceria-coated alumina carrier[J]. Appl Catal A: Gen, 2002,234(1/2):271-282.  

    20. [20]

      WU L, WIESMANN H J, MOODENBAUGH A R, KLIE R F, ZHU Y, WELCH D O, SUENAGA M. Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size[J]. Phys Rev B, 2004,69(12):125415-125417. doi: 10.1103/PhysRevB.69.125415

    21. [21]

      SONG Z, LIU W, NISHIGUCHI H. Quantitative analyses of oxygen release/storage and CO2 adsorption on ceria and Pt-Rh/ceria[J]. Catal Commun, 2007,8(4):725-730. doi: 10.1016/j.catcom.2006.08.048

    22. [22]

      SELLICK D R, ARANDA A, GARCÍA T, LÓPEZ J M, SOLSONA B, MASTRAL A M, MORGAN D J, CARLEY A F, TAYLOR S H. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation[J]. Appl Catal B: Environ, 2013,132-133(1):98-106.

    23. [23]

      ACERBI N, GOLUNSKI S, TSANG S C, DALY H, HARDACRE C, SMITH R, COLLIER P. Promotion of ceria catalysts by precious metals: Changes in nature of the interaction under reducing and oxidizing conditions[J]. J Phys Chem C, 2012,116(25):13569-13583. doi: 10.1021/jp212233u

    24. [24]

      MADIER Y, DESCORME C, GOVIC A M L, DUPREZ D. Oxygen mobility in CeO2 and CexZr1-xO2 compounds: Study by CO transient oxidation and 18O/16O isotopic exchange[J]. J Phys Chem B, 1999,103(50):10999-11006. doi: 10.1021/jp991270a

    25. [25]

      LIU X, ZHOU K, WANG L, WANG B, LI Y, AM J. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc, 2016,131(9):3140-3141.  

    26. [26]

      KANTCHEVA M, SAMARSKAYA O, ILIEVA L, PANTALEO G, VENEZIA A M, ANDREEVA D. In situ FT-IR investigation of the reduction of NO with CO over Au/CeO-Al2O3 catalyst in the presence and absence of H2[J]. Appl Cata B: Environ, 2009,88(1/2):113-126.

    27. [27]

      OH S H, FISHER G B, CARPENTER J E, GOODMAN D W. Comparative kinetic studies of CO+O2 and CO+NO reactions over single crystal and supported rhodium catalysts[J]. J Catal, 1986,100(2):360-376. doi: 10.1016/0021-9517(86)90103-X 

    28. [28]

      NAM I S, ELDRIDGE J W, KITTRELL J R. Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia[J]. Ind Eng Chem Prod Res Dev, 2002,25(2):192-197.

    29. [29]

      XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys. Chem C, 2016,113(11):4426-4432.

    30. [30]

      WAQIFA M, BAZINA P, SAURA O, LAVALLEY , BLANCHARD G, TOURET O. Study of ceria sulfation[J]. Appl Catal B: Environ, 1997,11(2):193-205. doi: 10.1016/S0926-3373(96)00040-9

    31. [31]

      LUO T, GORTE R J. Characterization of SO2-poisoned ceria-zirconia mixed oxides[J]. Appl Catal B: Environ, 2004,53(2):77-85. doi: 10.1016/j.apcatb.2004.04.020

    32. [32]

      DONG W K, NAM K B, HONG S C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOxby NH3[J]. Appl Catal B: Environ, 2015,166-167(1):37-44.

  • 加载中
    1. [1]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    4. [4]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    5. [5]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    6. [6]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    7. [7]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    8. [8]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    9. [9]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    10. [10]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    13. [13]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    14. [14]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    15. [15]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    18. [18]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    19. [19]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    20. [20]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

Metrics
  • PDF Downloads(3)
  • Abstract views(1103)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return