Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts
- Corresponding author: LI Chun-yi, chuyli@upc.edu.cn
Citation:
GUO Li-li, LIU Lu, ZHU Xiao-lin, ZHANG Qiang, LI Chun-yi. Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(6): 723-730.
CRUTZEN P J, BRVHL C. Catalysis by NOx as the main cause of the spring to fall stratospheric ozone decline in the northern hemisphere[J]. J Phys Chem A, 2001,105:1579-1582. doi: 10.1021/jp001984h
BABICH I V, SESHAN K, LEFFERTS L. Nature of nitrogen specie in coke and their role in NOx, formation during FCC catalyst regeneration[J]. Appl Catal B: Environ, 2005,59(3/4):205-211.
SCHMAL M, VANNICE M A, BALDANZA M A S. Pd-xMo/Al2O3 catalysts for NO reduction by CO[J]. J Catal, 1999,185:138-151. doi: 10.1006/jcat.1999.2465
SHIN H K, HIRABAYASHI H, YAHIRO H, WATANABE M. Selective catalytic reduction of no by ethene in excess oxygen over platinum ion-exchanged MFI zeolites[J]. Catal Today, 1995,26(1):13-21. doi: 10.1016/0920-5861(95)00125-Y
LIMA R K C D, BATISTA M S, WALLAU M, SANCHES E P. High specific surface area LaFeCo perovskites-synthesis by nanocasting and catalytic behavior in the reduction of NO with CO[J]. Appl Catal B: Environ, 2009,90(3):441-450.
ILIEVA L, PANTALEO G, IVANOV I, VENEZIA A M. Gold catalysts supported on CeO2, and CeO2-Al2O3 for NOx reduction by CO[J]. Appl Catal B: Environ, 2006,65(1/2):101-109.
TROVARELLI A, LEITENBURG C D, BOARO M, DOLCETTI G. The utilization of ceria in industrial catalysis[J]. Catal Today, 1999,50(2):353-367. doi: 10.1016/S0920-5861(98)00515-X
KIM J R, MYEONG W J, IHM S K. Characteristics of CeO2-ZrO2, mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as support of Rh catalyst for catalytic reduction of NO by CO[J]. J Catal, 2009,263(1):123-133. doi: 10.1016/j.jcat.2009.02.001
BAIDYA T, GUPTA A, DESHPANDEY P A, MADRAS G, HEGDE M S. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. J Phys Chem C, 2009,113(10):4059-4068. doi: 10.1021/jp8060569
CHEN J, ZHU J, ZHAN Y, LIN X, CAI G, WEI K, ZHENG Q. Characterization and catalytic performance of Cu/CeO2 and Cu/MgO-CeO2 catalysts for NO reduction by CO[J]. Appl Catal A: Gen, 2009,363(1):208-215.
GAYEN A, BAIDYA T, RAMESH G S, SRIHARI R, HEGDE M S. Design and fabrication of an automated temperature programmed reaction system to evaluate 3-way catalysts Ce1-x-y(La/Y)xPtyO2-δ[J]. J Chem Sci, 2006,118(1):47-55. doi: 10.1007/BF02708765
ILIEVA L, PANTALEO G, IVANOV I, NEDYALKOVA R, VENEZIA A M. NO reduction by CO over gold based on ceria doped by rare earth metals[J]. Catal Today, 2008,139(3):168-173. doi: 10.1016/j.cattod.2008.06.033
BHATTACHARYYA A A, WOLTERMANN G M, JIN S Y, KARCH J A, CORMIER W E. Catalytic SOx abatement: The role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas[J]. Ind Eng Chem Res, 1988,27(8):1356-1360. doi: 10.1021/ie00080a004
FORNASARI G, TRIFIRÒF , VACCARI A, PRINETTO F, GHIOTTI G, CENTI G. Novel low temperature NOx, storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds[J]. Catal Today, 2002,75(1/4):421-429.
BOARO M, GIORDANO F, RECCHIA S, SANTO V D, GIONA M, TROVARELLI A. On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts[J]. Appl Catal B: Environ, 2004,52(3):225-237. doi: 10.1016/j.apcatb.2004.03.021
LI J, LUO G, CHU Y, WEI F. Experimental and modeling analysis of NO reduction by CO for a FCC regeneration process[J]. Chem Eng J, 2012,184(2):168-175.
TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catal Rev, 1996,38(4):439-520. doi: 10.1080/01614949608006464
KUMAR P A, REDDY M P, HYUN-SOOK B, PHIL H H. Influence of Mg addition on the catalytic activity of alumina supported Ag for C3H6-SCR of NO[J]. Catal Lett, 2009,131(1):85-97.
DAMYANOVA S, PEREZ C A, SCHMAL M, BUENO J M C. Characterization of ceria-coated alumina carrier[J]. Appl Catal A: Gen, 2002,234(1/2):271-282.
WU L, WIESMANN H J, MOODENBAUGH A R, KLIE R F, ZHU Y, WELCH D O, SUENAGA M. Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size[J]. Phys Rev B, 2004,69(12):125415-125417. doi: 10.1103/PhysRevB.69.125415
SONG Z, LIU W, NISHIGUCHI H. Quantitative analyses of oxygen release/storage and CO2 adsorption on ceria and Pt-Rh/ceria[J]. Catal Commun, 2007,8(4):725-730. doi: 10.1016/j.catcom.2006.08.048
SELLICK D R, ARANDA A, GARCÍA T, LÓPEZ J M, SOLSONA B, MASTRAL A M, MORGAN D J, CARLEY A F, TAYLOR S H. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation[J]. Appl Catal B: Environ, 2013,132-133(1):98-106.
ACERBI N, GOLUNSKI S, TSANG S C, DALY H, HARDACRE C, SMITH R, COLLIER P. Promotion of ceria catalysts by precious metals: Changes in nature of the interaction under reducing and oxidizing conditions[J]. J Phys Chem C, 2012,116(25):13569-13583. doi: 10.1021/jp212233u
MADIER Y, DESCORME C, GOVIC A M L, DUPREZ D. Oxygen mobility in CeO2 and CexZr1-xO2 compounds: Study by CO transient oxidation and 18O/16O isotopic exchange[J]. J Phys Chem B, 1999,103(50):10999-11006. doi: 10.1021/jp991270a
LIU X, ZHOU K, WANG L, WANG B, LI Y, AM J. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc, 2016,131(9):3140-3141.
KANTCHEVA M, SAMARSKAYA O, ILIEVA L, PANTALEO G, VENEZIA A M, ANDREEVA D. In situ FT-IR investigation of the reduction of NO with CO over Au/CeO-Al2O3 catalyst in the presence and absence of H2[J]. Appl Cata B: Environ, 2009,88(1/2):113-126.
OH S H, FISHER G B, CARPENTER J E, GOODMAN D W. Comparative kinetic studies of CO+O2 and CO+NO reactions over single crystal and supported rhodium catalysts[J]. J Catal, 1986,100(2):360-376. doi: 10.1016/0021-9517(86)90103-X
NAM I S, ELDRIDGE J W, KITTRELL J R. Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia[J]. Ind Eng Chem Prod Res Dev, 2002,25(2):192-197.
XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys. Chem C, 2016,113(11):4426-4432.
WAQIFA M, BAZINA P, SAURA O, LAVALLEY , BLANCHARD G, TOURET O. Study of ceria sulfation[J]. Appl Catal B: Environ, 1997,11(2):193-205. doi: 10.1016/S0926-3373(96)00040-9
LUO T, GORTE R J. Characterization of SO2-poisoned ceria-zirconia mixed oxides[J]. Appl Catal B: Environ, 2004,53(2):77-85. doi: 10.1016/j.apcatb.2004.04.020
DONG W K, NAM K B, HONG S C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOxby NH3[J]. Appl Catal B: Environ, 2015,166-167(1):37-44.
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Jianing He , Xiao Wang , Zijian Wang , Ruize Jiang , Ke Wang , Rui Zhang , Huilin Wang , Baokang Geng , Hongyi Gao , Shuyan Song , Hongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
a:Ce-La/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.5;c: Ce-La/MgAl2O4-1.0 reaction conditions: 0.1% NO, 4% CO, 2% O2 in balance N2, GHSV=24 000 h-1
a: Ce-La/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.5; c: Ce-La/MgAl2O4-1.0 reaction conditions: 0.1% NO, 4% CO, 2% O2, 0.08% SO2 in balance N2, GHSV=24 000 h-1, t=700 ℃
■, □,
a: Ce/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.2; c: Ce-La/MgAl2O4-0.5; d: Ce-La/MgAl2O4-1.0
a: Ce-La/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.5; c: Ce-La/MgAl2O4-1.0
a: Ce-La/MgAl2O4-0.2; b: Ce-La/MgAl2O4-0.5; c: Ce-La/MgAl2O4-1.0
(a) the schematic diagram of crystal structure of Ce-O-La solid solution and (b) the possible pathway for generation of oxygen vacancies and NO removal by CO over Ce-O-La solid solution
a: Ce-La/MgAl2O4-0.2-P; b: Ce-La/MgAl2O4-0.5-P; c: Ce-La/MgAl2O4-0.5-P-P; d: Ce-La/MgAl2O4-1.0