Low rank coal mild liquefaction coupled with carbonization and its products
- Corresponding author: WU You-qing, wyq@ecust.edu.cn
Citation:
ZHUANG De-wang, WU Shi-yong, YOU Quan, HUANG Sheng, SHANG Jian-xuan, MIN Xiao-jian, ZHENG Hua-an, WU You-qing. Low rank coal mild liquefaction coupled with carbonization and its products[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(5): 528-533.
WANG Jian-guo, ZHAO Xiao-hong. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bull Chin Acad Sci, 2012,27(3):382-388.
LIU Z, SHI S, LI Y. Coal liquefaction technologies-development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci, 2010,65(1):12-17. doi: 10.1016/j.ces.2009.05.014
HAO Yu-liang, YANG Jian-li, LI Yun-mei, LIU Mu-xin, YANG Yong. Study on mild liquefaction of lower rank coal[J]. J Fuel Chem Technol, 2012,40(10):1153-1160.
RIZKIANA J, GUAN G, WIDAYATNO W B, HAO X, WANG Z, ZHANG Z, ABUDULA A. Oil production from mild pyrolysis of low-rank coal in molten salts media[J]. Appl Energy, 2015,154:944-950. doi: 10.1016/j.apenergy.2015.05.092
SHANG Jian-xuan, MA Bao-qi, ZHANG Qiu-ping, SHEN He-ping. Low Rank Coal Grading Conversion Poly-Generation Technology[M]. Beijing: China Coal Industry Publishing House, 2013.
HIRANO K. Outline of NEDOL coal liquefaction process development (pilot plant program)[J]. Fuel Process Technol, 2000,62(2):109-118.
MIURA K, MAE K, SAKURADA K, HASHIMOTO K. Flash pyrolysis of coal following thermal pretreatment at low temperature[J]. Energy Fuels, 1992,6:16-21. doi: 10.1021/ef00031a003
ZHU Yu-fei. Integrated process of direct coal liquefaction and its residue pyrolysis[J]. J China Coal Soc, 2013,38(8):1454-1458.
CYPRES R, LI B. Effect of pretreatment by various gases on hydropyrolysis of a Belgian coal[J]. Fuel Process Technol, 1988,20(1/3):337-347.
WU You-qing, WU Shi-yong, GAO Jin-sheng, LI Liang. A mild coal liquefaction process: CN, 201310539685.2[P]. 2014-02-05.
WU Chun-lai. Direct Coal Liquefaction[M]. Beijing: Chemistry Industry Press, 2010.
LI Gang, LING Kai-cheng. Influencing factors on quick coal liquefaction at high temperature[J]. J Fuel Chem Technol, 2009,37(6):648-653.
WASAKA S, IBARAGI S, HASHIMOTO T, TSUKUI Y, KATSUYAMA T, SHIDONG S. Study on coal liquefaction characteristics of Chinese coals[J]. Fuel, 2002,81:1551-1557. doi: 10.1016/S0016-2361(02)00087-X
FINSETH D H, CILLO D L, SPRECHER R F, RETCOFSKY H L, LETT R G. Changes in hydrogen utilization with temperature during direct coal liquefaction[J]. Fuel, 1985,64(12):1718-1722. doi: 10.1016/0016-2361(85)90399-0
ZHU Yin-hui, HAO Lin-shan. Coal Chemistry[M]. 2nd ed. Beijing: Chemical Industry Press, 2011.
YAN Shan-cheng, ZHENG Ming-dong, YAN Wen-fu. The development of coal blending technology[J]. Shandong Metall, 2006,28(5):31-32.
FLATMAN-FAIRS D P, HARRISON G. Suitability of UK bituminous and Spanish lignitous coals, and their blends for two stage liquefaction[J]. Fuel, 1999,78(14):1711-1717. doi: 10.1016/S0016-2361(99)00119-2
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Haiyang Zhang , Yanzhao Dong , Haojie Li , Ruili Guo , Zhicheng Zhang , Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
1: gas cylinder (N2); 2: mass flowmeter; 3: spin valve; 4: reactor; 5: salt bath; 6: condensation collector; 7: acetone absorber; 8: ice-water bath
■: semi-cokes; ●: organic liquid products; ▲: gaseous products from liquefaction; ◆: gaseous products from carbonization; ▼: water; ▽: CH4; □: C2-4; ○: CO2; △: CO
a: 450 ℃; b: 430 ℃; c: 410 ℃; d: 390 ℃; e: raw coal
○: coking indexes (G); ■: asphaltene content; ▲: Vdaf