Citation: OUYANG Qian, YANG Ni, YAO Jing-wen, HUANG Jin, ZHANG Yi, LIU Xue-jun. Research on the catalytic performance of supported Pt catalyst for hydrodeoxygenation of biodiesel[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1202-1209. shu

Research on the catalytic performance of supported Pt catalyst for hydrodeoxygenation of biodiesel

  • Corresponding author: LIU Xue-jun, zjutjjb@163.com
  • Received Date: 17 May 2018
    Revised Date: 22 July 2018

Figures(6)

  • The Pt/Al2O3, Pt/Al2O3-ZSM-5 and Pt/ZSM-5 catalysts were prepared and characterized by XRD, BET, SEM and NH3-TPD. The effects of crystal structure, acidity, pore size distribution and external shape of the three catalysts on the hydrodeoxygenation of fatty acid methyl esters were investigated under different reaction conditions. The results show that the Brønsted acidic sites and proportion of mesoporous volume were critical for the hydrodeoxygenation of fatty acid methyl esters. The Brønsted acidic site plays a major role in the C-O bond breakage of deoxygenation reaction, the mesopores improved the mass transfer efficiency of the entire reaction and avoided cracking of C12-18 long chain alkanes. The hydrodeoxygenation activity of the three catalysts were as follow:Pt/Al2O3-ZSM-5>Pt/Al2O3>Pt/ZSM-5. The optimal reaction conditions were as follow:t=350 ℃, p=2 MPa, H2/oil=1000, WHSV=0.5 h-1. Under the optimal reaction conditions, the fatty acid methyl ester conversion of Pt/Al2O3-ZSM-5 was 99.4%, and the liquid yield of the target product was 86.8%.
  • 加载中
    1. [1]

      ZHAO X H, WEI L, CHENG S Y, JULSON J. Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels[J]. Catalysts, 2017,7(3):83-107.  

    2. [2]

      ZHANG S, YAN Y, LI T Z. Upgrading of liquid fuel from the pyrolysis of biomass[J]. Bioresource Technol, 2005,96(5):545-550. doi: 10.1016/j.biortech.2004.06.015

    3. [3]

      HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-4098. doi: 10.1021/cr068360d

    4. [4]

      SHI Y C, XING E H, WU K J, WANG J L, YANG M D, WU Y L. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts[J]. Catal Sci Technol, 2017,7(12):2385-2415. doi: 10.1039/C7CY00574A

    5. [5]

      DICKERSON T, SORIA J. Catalytic fast pyrolysis:A Review[J]. Energies, 2013,6(1):514-538. doi: 10.3390/en6010514

    6. [6]

      YANG Xiao-dong, WANG Xin-miao, GAO Shan-bin, WANG An-jie. Hydrodesulfurization performances of Pd catalysts supported on ZSM-5/MCM-41 composite zeolite[J]. Acta Chim Sin, 2017,75(5):479-484.  

    7. [7]

      ZUO Hua-liang, LIU Qi-ying, WANG Tie-jun, SHI Na, LIU Jian-guo, MA Long-long. Catalytic hydrodeoxygenation of vegetable oil over Ni catalysts to produce second-generation biodiesel[J]. J Fuel Chem Technol, 2012,40(9):1067-1073. doi: 10.3969/j.issn.0253-2409.2012.09.007

    8. [8]

      ECHEANDIA S, PAWELEC B, BARRIO V L, ARIAS P L, CAMBRA J F, LORICERA C V, FIERRO J L G. Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils[J]. Fuel, 2014,117(1):1061-1073.  

    9. [9]

      JI Y J, YANG H H, YAN W. Strategies to enhance the catalytic performance of ZSM-5 zeolite in hydrocarbon cracking:A Review[J]. Catalysts, 2017,7(12):367-397. doi: 10.3390/catal7120367

    10. [10]

      CHENG S Y, WEI L, JULSON J, MUTHUKUMARAPPAN K, KHAREL P R. Upgrading pyrolysis bio-oil to hydrocarbon enriched biofuel over bifunctional Fe-Ni/HZSM-5 catalyst in supercritical methanol[J]. Fuel Process Technol, 2017,167(12):117-126.  

    11. [11]

      LIU J N, XIANG M, WU D F. Enhanced phenol hydrodeoxygenation over a Ni catalyst supported on a mixed mesoporous ZSM-5 zeolite and Al2O3[J]. Catal Lett, 2017,147(10):2498-2507. doi: 10.1007/s10562-017-2161-y

    12. [12]

      KANG J C, CHENG K, ZHANG L, ZHANG Q H, DING J S, HUA W Q, LOU Y C, ZHAI Q G, WANG Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-11 isoparaffins[J]. Angew Chem, 2011,123(22):5306-5309. doi: 10.1002/ange.v123.22

    13. [13]

      CHEN N, GONG S F, SHIRAI H, WATANABE T, QIAN E W. Effects of Si/Al ratio and Pt loading on Pt/SAPO-11 catalysts in hydroconversion of Jatropha oil[J]. Appl Catal A:Gen, 2013,466(36):105-115.  

    14. [14]

      SANKARANARAYANAN T M, BERENGUER A, OCHOA-HERNáNDEZ C, MORENO I, JANA P, CORONADO J M, SERRANO D P, PIZARRO P. Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts:Effect of metal and support properties[J]. Catal Today, 2015,243(8):163-172.  

    15. [15]

      CHEN N, WANGN N N, REN Y X, TOMINAGA H, QIAN E W. Effect of surface modification with silica on the structure and activity of Pt/ZSM-22@SiO2, catalysts in hydrodeoxygenation of methyl palmitate[J]. J Catal, 2017,345:124-134. doi: 10.1016/j.jcat.2016.09.005

    16. [16]

      SRIFA A, FAUNGNAWAKIJ K, ITTHIBENCHAPONG V, VIRIYA-EMPIKUL N, CHARINPANITKUL T, ASSABUMRUNGRAT S. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst[J]. Bioresouce Technol, 2014,158(X):81-90.  

  • 加载中
    1. [1]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    5. [5]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    6. [6]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    7. [7]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    8. [8]

      Le HanZhou YuanBohan LiYuchi ZhangLin YangYan Xu . Highly-stable cesium lead halide perovskite CsPbBr3/CsPb2Br5 heteronanocrystals in zeolitic imidazolate framework-8 for antibiotic photodegradation. Chinese Chemical Letters, 2025, 36(6): 110349-. doi: 10.1016/j.cclet.2024.110349

    9. [9]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    10. [10]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    11. [11]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    12. [12]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    13. [13]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    14. [14]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    15. [15]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    16. [16]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    17. [17]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

Metrics
  • PDF Downloads(14)
  • Abstract views(1463)
  • HTML views(356)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return