Citation: WEI Min, CHENG Li-jun, YUAN Shan-liang, BO Qi-fei, ZHANG Biao, JIANG Yi. Effect of pH value on the structure and properties of iron-molybdenum catalysts during preparation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 209-214. shu

Effect of pH value on the structure and properties of iron-molybdenum catalysts during preparation

  • Corresponding author: ZHANG Biao, yjiang@cioc.ac.cn JIANG Yi, zhangbiao07@139.com
  • Received Date: 29 November 2018
    Revised Date: 29 December 2018

    Fund Project: Sichuan Science and Technology Program 2018GZ0314The project was supported by Sichuan Science and Technology Program (2018GZ0314) and Project of CAS "Light of West China" program, 2014

Figures(5)

  • A series of iron-molybdenum catalysts were prepared by controlling the acidity of ammonium molybdate solution in coprecipitation. The structure of the catalysts was characterized by N2 adsorption-desorption, Raman, XRD, SEM and H2-TPR. The Fe-Mo catalysts prepared with different pH values were investigated for their performance in methanol oxidation to formaldehyde reaction. The results showed that the acidity of ammonium molybdate solution affects the particle size, morphology, distribution and enrichment of iron and molybdenum species on the surface of the catalyst. Appropriate acidity of ammonium molybdate solution can optimize the ratio of MoO3 and Fe2(MoO4) species on the catalyst surface, and improves the catalytic oxidation performance, which is conducive to the improvement of yield and selectivity of formaldehyde.
  • 加载中
    1. [1]

      ZHANG Shuai, ZHANG Yi-ke, HU Rlckt, ZHEN Bin, HAN Ming-han. Surface structure and activity of iron molybdate catalyst for methanol oxidation to formaldehyde[J]. J Chem Ind Eng, 2016,67(9):3678-3683.  

    2. [2]

      RAUN K V, LUNDEGAARD L F, CHEVALLIER J, BEATO P, APPEL C C, NIELSEN K. Deactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehyde[J]. Catal Sci Technol, 2018,8(18):4626-4637. doi: 10.1039/C8CY01109E

    3. [3]

      ANDERSSON A, HOLMBERG J, HÄGGBLAD R. Process improvements in methanol oxidation to formaldehyde:Application and catalyst development[J]. Top Catal, 2016,59(17/18):1589-1599.  

    4. [4]

      YUAN Hao-ran, ZHANG Hao, YIN Hui-qin, SHI Xiang-yu, XIE Xiang. Study on iron-molybdenum catalyst for producing formaldehyde by methanol oxidation[J]. J Chem Ind Eng, 2010,31(6):10-13. doi: 10.3969/j.issn.1006-7906.2010.06.004

    5. [5]

      BABICHEV I V, ILYIN A A, RUMIANTSEV R N, ILYIN A P, DREMIN M V. Effect of preparation conditions on the composition, structure, and properties of iron-molybdenum catalyst[J]. Russ J Appl Chem, 2016,89(2):227-232. doi: 10.1134/S1070427216020105

    6. [6]

      BRIAND L E, HIRT A M, WACHS I E. Quantitative determination of the number of surface active sites and the turnover frequencies for methanol oxidation over metal oxide catalysts:Application to bulk metal molybdates and pure metal oxide catalysts[J]. J Catal, 2001,202(2):268-278.  

    7. [7]

      HARDCASTLE F D, WACHS I E. Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy[J]. J Raman Spectr, 1990,21(10):683-691. doi: 10.1002/jrs.v21:10

    8. [8]

      XU Q, JIA G, ZHANG J, FENG Z, LI C. Surface phase composition of iron molybdate catalysts studied by UV Raman spectroscopy[J]. J Phys Chem C, 2008,112(25):9387-9393. doi: 10.1021/jp800359p

    9. [9]

      SOARES A P V, PORTELA M F, KIENNEMANN A, HILAIRE L, MILLET J M M. Iron molybdate catalysts for methanol to formaldehyde oxidation:Effects of Mo excess on catalytic behaviour[J]. Appl Catal A:Gen, 2001,206(2):221-229.  

    10. [10]

      PLYASOVA L M, KLEVTSOVA R F, BORISOV S V, KEFELI L M. The crystal structure of iron molybdate[C]//Russian Academy of Sciences. Doklady Akademii Nauk, 1966, 167(1): 84-87.

    11. [11]

      SOARES A P V, PORTELA M F, KIENNEMANN A. Methanol selective oxidation to formaldehyde over iron-molybdate catalysts[J]. Catal Rev, 2005,47(1):125-174. doi: 10.1081/CR-200049088

    12. [12]

      SOARES A P V, FARINHA PORTELA M, KIENNEMANN A, HILAIRE L, MILLET J M M. Iron molybdate catalysts for methanol to formaldehyde oxidation:Effects of Mo excess on catalytic behaviour[J]. Appl Catal A:Gen, 2001,206(2):221-229. doi: 10.1016/S0926-860X(00)00600-1

    13. [13]

      TRIFIRÓF . The chemistry of oxidation catalysts based on mixed oxides[J]. Catal Today, 1998,41(1):21-35.  

    14. [14]

      ROUTRAY K, ZHOU W, KIELY C J, GRüNERT W, WACHS I E. Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde[J]. J Catal, 2010,275(1):84-98. doi: 10.1016/j.jcat.2010.07.023

    15. [15]

      ZHANG H, SHEN J, GE X. The reduction behavior of Fe-Mo-O catalysts studied by temperature-programmed reduction combined with in situ mössbauer spectroscopy and X-ray diffraction[J]. J Solid State Chem, 1995,117(1):127-135. doi: 10.1006/jssc.1995.1255

    16. [16]

      NIWA M, MIZUTANI M, TAKAHASHI M, MURAKAMI Y. Mechanism of methanol oxidation over oxide catalysts containing MoO3[J]. J Catal, 1981,70(1):14-23.  

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    6. [6]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    16. [16]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(19)
  • Abstract views(2293)
  • HTML views(546)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return