Citation: CHEN Ran, LIU Jie, ZHANG Xiang-wen. Enhancement of thermal oxidation stability of endothermic hydrocarbon fuels by using oxygen scavengers[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 249-256. shu

Enhancement of thermal oxidation stability of endothermic hydrocarbon fuels by using oxygen scavengers

  • Corresponding author: LIU Jie, jie.liu@tju.edu.cn ZHANG Xiang-wen, zhangxiangwen@tju.edu.cn
  • Received Date: 16 October 2019
    Revised Date: 21 December 2019

    Fund Project: the National Natural Science Foundation of China 21476168The project was supported by the National Natural Science Foundation of China (21476168)

Figures(7)

  • Thermal oxidation stability is one of the important properties for evaluating fuel quality during the storage and use of endothermic hydrocarbon fuels; it reflects the extent to which jet fuel is affected by dissolved oxygen below 260℃ and the depth of oxidation reaction. In this work, the basic properties and thermal stability of endothermic hydrocarbon fuels with oxygen scavengers were evaluated by accelerated oxidation method combined with titration, infrared spectroscopy, particle size distribution and JFTOT. The effect of three oxygen scavengers, viz., triphenylphosphine (TPP), dicyclohexylphenylphosphine (DCP) and 1, 2, 5-trimethylpyrrole (TMP), on the auto-oxidation process of endothermic hydrocarbon fuels were comparatively investigated and the optimal addition amount within the test range was determined. The results show that there is no significant change in the fuel composition and basic physical properties after the addition of oxygen scavengers. The dissolved oxygen concentration in the fuel decreases with the increase of the amount of oxygen scavengers, and the maximum drop is 31.95 mg/m3. The peroxide value and acid value of the samples show different degrees of decline after accelerated oxidation, and the particle size distribution of the micelles tends to be smaller. The JFTOT test results can meet the national standards. In general, the addition of oxygen scavenger can effectively improve the thermal oxidation stability of the fuel; the effect of three oxygen scavengers follows the order of TMP >TPP ≈ DCP and the optimal addition amount is 1.5×10-5 (by mass fraction).
  • 加载中
    1. [1]

      BABOK K K. Jet Fuel and Rocket Fuel[M]. ZHANG Pu et al, translation. Beijing: China Industry Press, 1965.

    2. [2]

      TAYLOR W F. Jet Fuel Thermal Stability[Z]. USA: NASA, 1979.

    3. [3]

      DENNSOV E T, KOVALEV G I. Oxidation & Antioxidation of Jet Fuel[M]. CHANG Ru-ji translation. Beijing: Hydrocarbon Processing Press, 1987.

    4. [4]

      FAN Qi-ming, MI Zhen-tao, ZHANG Xiang-wen, YU Yan. Progress in research of improving thermal stability of aviation fuels[J]. Petrochem Technol Appl, 2002,20(4):261-263. doi: 10.3969/j.issn.1009-0045.2002.04.014

    5. [5]

      ROAN M A, BOEHMAN A L. The effect of fuel composition and dissolved oxygen on deposit formation from potential JP-900 basestocks[J]. Energy Fuels, 2004,18(3):835-843.  

    6. [6]

      ZABARNICK S. Chemical kinetic modeling of jet fuel autoxidation and antioxidant chemistry[J]. Ind Eng Chem Res, 1993,32(6):1012-1017. doi: 10.1021/ie00018a003

    7. [7]

      ALBORZI E, GADSBY P, ISMAIL M S, SHEIKHANSARI A, DWYER M R, MEIJER A J, BLAKEY S G, POURKASHANIAN M. Comparative study of the effect of fuel deoxygenation and polar species removal on jet fuel surface deposition[J]. Energy Fuels, 2019,33(3):1825-1836.

    8. [8]

      WANG Chen-chen, PENG Xiao-tian, WANG Su-ming, LIU Wei-hua, FENG Shi-yu. Summarization of the effect of dissolved oxygen content on fuel coking[J]. J Civil Avia Flight Univ Chin, 2018,29(5):19-22+27. doi: 10.3969/j.issn.1009-4288.2018.05.005

    9. [9]

      BEAVER B D. Development of oxygen scavenger additives for jet fuels[D]. Pittsburgh: Duquesne University, 1993.

    10. [10]

      BEAVER B D, DEMUNSHI R, HENEGHAN S P, WHITACRE S D, NETA P. Model studies directed at the development of new thermal oxidative stability enhancing additives for future jet fuels[J]. Energy Fuels, 1997,11(2):396-401.  

    11. [11]

      BEAVER B D, GAO L, FEDAK M G, COLEMAN M M, SOBKOWIAK M. Model studies examining the use of dicyclohexylphenylphosphine to enhance the oxidative and thermal stability of future jet fuels[J]. Energy Fuels, 2002,16(5):1134-1140.  

    12. [12]

      BEAVER B D, TENG Y, GUIRIEC P, HAPIOT P, NETA P. Mechanisms of oxidation of 1, 2, 5-trimethylpyrrole:Kinetic, spectroscopic, and electrochemical studies[J]. J Phys Chem A, 1998,102(30):6121-6128.  

    13. [13]

      THAVASI V, BETTENS R P A, LEONG L P. Temperature and solvent effects on radical scavenging ability of phenols[J]. J Phys Chem A, 2009,113(13):3068-3077.  

    14. [14]

      MACLEAN P D, CHAPMAN E E, DOBROWOLSKI S L, THOMPSON A, BARCLAY L R C. Pyrroles as antioxidants:Solvent effects and the nature of the attacking radical on antioxidant activities and mechanisms of pyrroles, dipyrrinones, and bile pigments[J]. J Org Chem, 2008,73(17):6623-6635. doi: 10.1021/jo8005073

    15. [15]

      IUGA C, URIBE S O, MIRANDA L D, VIVIER BUNGE A. Selectivity in radical alkylation of substituted pyrroles[J]. Int J Quantum Chem, 2010,110(3):697-705.  

    16. [16]

      GB/T-6537-2018, No.3 jet fuel[S].

    17. [17]

      GB/T-1884-2000, Crude petroleum and liquid petroleum products-Laboratory determination of density-Hydrometer method[S].

    18. [18]

      GB/T-384-1981, Determination of calorific value of petroleum products[S].

    19. [19]

      GB/T-2429-1988, Aviation fuels-Calculation of net heat of combustion[S].

    20. [20]

      GB/T-3536-2008, Petroleum products-Determination of flash and fire points-Cleveland open cup method[S].

    21. [21]

      GB/T-265-1988, Petroleum products-Determination of kinematic viscosity and calculation of dynamic viscosity[S].

    22. [22]

      GB/T 601-2016, Chemical reagent-Preparations of reference titration solutions[S].

    23. [23]

      SH/T 0176-1992, Standard test method for hydroperoxide number of aviation turbine fuels, gasoline and diesel fuels[S].

    24. [24]

      GB/T 12574—1990, Jet fuels-Determination of total acid number[S].

    25. [25]

      GB/T-9169-2010, Standard test method for thermal oxidation stability of aviation turbine fuels.JFTOT procedure[S].

    26. [26]

      GB/T-3555-1992, Petroleum products-Determination of Saybolt color-Saybolt chromometer method[S].

    27. [27]

      SH/T-0174-2015, Petroleum products and hydrocarbon solvents-Detection of thiols and other sulfur species-Doctor test[S].

    28. [28]

      ZHAO L, ZHANG X, PAN L, LIU J. Storage period prediction and metal compatibility of endothermic hydrocarbon fuels[J]. Fuel, 2018,233:1-9. doi: 10.1016/j.fuel.2018.06.034

    29. [29]

      MIL-T-5624P, Military specification: Turbine fuel, aviation, grades JP-4, JP-5, and JP-5 / JP-8[S].

    30. [30]

      ERVIN J, HENEGHAN S, MARTEL C, WILLIAMS T. Surface effects on deposits from jet fuels[J]. J Eng Gas Turb Power, 1996,118(2):278-285. doi: 10.1115/1.2816589

    31. [31]

      BEAVER B D, CLIFFORD C B, FEDAK M G, GAO L, IYER P S, SOBKOWIAK M. High heat sink jet fuels. Part 1. Development of potential oxidative and pyrolytic additives for JP-8[J]. Energy Fuels, 2006,20(4):1639-1646.  

    32. [32]

      MASNOVI J, KOCHI J. Direct observation of ion-pair dynamics[J]. J Am Chem Soc, 1985,107(26):7880-7893.

  • 加载中
    1. [1]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    6. [6]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(7)
  • Abstract views(572)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return