Citation: YANG Long, KONG Ling, SHI Hui-xian, QIN Shu-hao, ZHANG Wei, GU Min-yan, SHEN Zheng, ZHANG Ya-lei. Study on the synthesis of propylene glycol through cellulose hydrogenation using alkaline promoted Ni-W/β-zeolite catalysts[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 48-54. shu

Study on the synthesis of propylene glycol through cellulose hydrogenation using alkaline promoted Ni-W/β-zeolite catalysts

  • Corresponding author: SHEN Zheng, shenzheng@tongji.edu.cn
  • Received Date: 27 July 2016
    Revised Date: 21 October 2016

    Fund Project: the National Natural Science Foundation of China 51625804the Fundamental Research Funds for the Central Universities 2870219026the National Natural Science Foundation of China 21376180the Fundamental Research Funds for the Central Universities 2870219028the International Collaborative Project from Shanghai Science and Technology Commission 14230710800the National Natural Science Foundation of China 21676205

Figures(6)

  • A series of Ni-W/β zeolite catalysts were prepared via incipient impregnation method in order to improve the yield of 1, 2-propylene glycol (1, 2-PG) in the alcohol products of cellulose hydrogenation. Under the reaction conditions of 240℃ and 6.0 MPa H2 for 30 min, the complete conversion of cellulose was obtained and the yields of 1, 2 propylene glycol and ethylene glycol (EG) were 19.3% and 45.3%, respectively. Different from other supports, the selectivity of 1, 2-PG was highly improved when β zeolite was used. The selectivity of 1, 2-PG was further improved after the addition of alkaline, and the yield of 1, 2-PG was up to 32.5% especially for Ba (OH)2. The function of alkaline catalysts in the reaction was also discussed based on a series of reactions using glucose as the substrate, indicating that alkaline was favorable for the isomerization of glucose to fructose and thus promoted the conversion of cellulose into 1, 2-PG. After two cycles of reuse, the yield of 1, 2-PG and EG slightly decreased (3.9% and 4.1%, respectively).
  • 加载中
    1. [1]

      FENG Jun-feng, JIANG Jian-chun, XU Jun-ming, HE Xiao-liang. Preparation of methyl glucosides and phenols throughthe liquefaction of biomass with methanol under high pressure[J]. J Fuel Chem Technol, 2014,42(4):434-442.  

    2. [2]

      ZHNAG Shao-chun. Catalytie conversion of cellulose into Polyols and 5-hydroxy methylfurfural[D]. Dalian:Dalian University of Technology, 2010.

    3. [3]

      RUPPERT A M, WEINBERG K, PALKOVITS R. Hydrogenolysis goes bio:from carbohydrates and sugar alcohols to platform chemicals[J]. Angew Chem Int Ed, 2012,51(11):2564-2601. doi: 10.1002/anie.201105125

    4. [4]

      LI C, WANG Q, ZHAO Z K. Acid in ionic liquid:An efficient system for hydrolysis of lignocellulose[J]. Green Chem, 2008,10(2):177-182. doi: 10.1039/B711512A

    5. [5]

      LOU C, WANG S, LIU H. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angew Chem Int Ed, 2007,46(40):7636-7639. doi: 10.1002/(ISSN)1521-3773

    6. [6]

      FUKOUKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem Int Ed, 2006,45(31):5161-5163. doi: 10.1002/(ISSN)1521-3773

    7. [7]

      DENG T, LIU H. Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt-SnOx/Al2O3 catalysts[J]. Green Chem, 2013,15(1):116-124. doi: 10.1039/C2GC36088H

    8. [8]

      JI N, ZHANG T, ZHENG M, WANG A, WANG H, WANG X, CHEN J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem Int Ed, 2008,120(44):8638-8641. doi: 10.1002/ange.v120:44

    9. [9]

      CAO Yue-ling, WANG Jun-wei, LI Qi-feng, YIN Ning, LIU Zhen-min, KANG Mao-qing, ZHU Yu-lei. Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts Ni-WO3/SBA-15[J]. J Fuel Chem Technol, 2013,41(8):943-949. doi: 10.1016/S1872-5813(13)60041-9 

    10. [10]

      XIAO Z, JIN S, PANG M, LIANG C. Conversion of highly concentrated cellulose to 1, 2-propanediol and ethylene glycol over highly efficient CuCr catalysts[J]. Green Chem, 2013,15(4):891-895. doi: 10.1039/c3gc40134k

    11. [11]

      ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. Chem Sus Chem, 2010,3(1):63-66. doi: 10.1002/cssc.v3:1

    12. [12]

      DONG W, SHEN Z, PENG B, GU M, ZHOU X, XIANG B, ZAHNG Y. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta lewis acid-base catalyst[J]. Sci Rep, 2016,626713. doi: 10.1038/srep26713

    13. [13]

      DIJKMANS J, GABRIELS D, DUSSELIER M, DE CLIPPEL F, VANELDEREN P, HOUTHOOFD K, MALFLIEF A, PONTIKES Y, SELS B F. Productive sugar isomerization with highly active Sn in dealuminated β zeolites[J]. Green Chem, 2013,15(10):2777-2785. doi: 10.1039/c3gc41239c

    14. [14]

      HIRANO Y, SAGATA K, KITA Y. Selective transformation of glucose into propylene glycol on Ru/C catalysts combined with ZnO under low hydrogen pressures[J]. Appl Catal A:Gen, 2015,502:1-7. doi: 10.1016/j.apcata.2015.05.008

    15. [15]

      ZHANG Y, WANG A, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem Commun, 2010,46(6):862-864. doi: 10.1039/B919182H

    16. [16]

      BERMEJO-DEVAL R, ASSARY R S, NIKOLLA E, MOLINER M, ROMAN-LESHKOV Y, HWANG S-J, PALSDOTTIR A, SILVERMAN D, LOBOR F, CURTISS L A. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites[J]. Proc Natl Acad Sci, 2012,109(25):9727-9732. doi: 10.1073/pnas.1206708109

    17. [17]

      MIZUGAKI T, YAMAKAWA T, ARUNDHATHI R, MITSUDOME T, JITSUKAWA K, KANEDA K. Selective hydrogenolysis of glycerol to 1, 3-propanediol catalyzed by Pt nanoparticles-AlOx/WO3[J]. Chem Lett, 2012,41(12):1720-1722. doi: 10.1246/cl.2012.1720

    18. [18]

      KOBAYASHI H, ITO Y, KOMANOYA T, HOSAKA Y, DHEPE P L, KASAI K, HARA K, FUKOUKA A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts[J]. Green Chem, 2011,13(2):326-333. doi: 10.1039/C0GC00666A

    19. [19]

      GUO X, LI Y, SHI R, LIU Q, ZHAN E, SHEN W. Co/MgO catalysts for hydrogenolysis of glycerol to 1, 2-propanediol[J]. Appl Catal, 2009,371(1):108-113.

    20. [20]

      HOLM M S, PAGAN-TORRES Y J, SARAVANAMURUGAN S, RIISAGER A, DUMESIC J A, TAARNING E. Sn-Beta catalysed conversion of hemicellulosic sugars[J]. Green Chem, 2012,14(3):702-706. doi: 10.1039/c2gc16202d

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    3. [3]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    10. [10]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(0)
  • Abstract views(822)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return