Citation: Ma Hao, Zou Lianning, Mi Linhan, Pan Haiting, Liao Chunyan, Teng Junjiang. Knoevenagel Condensation Reaction at Room Temperature under Solvent-Free Conditions Catalyzed by Activated Carbon-Supported Chitosan[J]. Chemistry, ;2018, 81(7): 616-624. shu

Knoevenagel Condensation Reaction at Room Temperature under Solvent-Free Conditions Catalyzed by Activated Carbon-Supported Chitosan

  • Corresponding author: Teng Junjiang, tjjteng@gdupt.edu.cn
  • Received Date: 4 January 2018
    Accepted Date: 28 April 2018

Figures(5)

  • The activated carbon (AC) supported chitosan (CS) catalyst, denoted as CS/AC, was prepared by a simple method. The physicochemical properties of the as-prepared catalyst were characterized by FT-IR, XRD, TG-DTG, SEM, BET, and elemental analysis. The catalytic performance was tested by the Knoevenagel condensation reaction, and the results showed that the catalyst can efficiently catalyze the Knoevenagel condensation reaction of a series of aromatic aldehydes with active methylene compounds at solvent-free and room temperature conditions, affording more than 80% products yield. Furthermore, when the reaction system is scaled up by 100 times, the catalyst still maintains high catalytic efficiency. Moreover, the catalyst can be recovered by simple filtration and reused at least 8 times without significant loss of activity, indicating that the catalyst is very stable.
  • 加载中
    1. [1]

      L G Voskressensky, A A Festa, A V Varlamov. Tetrahedron, 2014, 70(3):551-572. 

    2. [2]

      I M McDonald. Knoevenagel Reaction. John Wiley & Sons, 2009.

    3. [3]

      N Mase, T Horibe. Org. Lett., 2013, 44(33):1854-1857.

    4. [4]

    5. [5]

      B List. Angew. Chem. Int. Ed., 2010, 49(10):1730-1734. 

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

      C I Ezugwu, B Mousavi, M A Asraf et al. J. Catal., 2016, 344:445-454. 

    12. [12]

    13. [13]

      H Koga, T Kitaoka, A Isogai. J. Mater. Chem., 2011, 21(25):9356-9361. 

    14. [14]

    15. [15]

    16. [16]

      M N Kumar, R A Muzzarelli, C Muzzarelli et al. Chem. Rev., 2004, 104(12):6017-6084. 

    17. [17]

      V Froidevaux, C Negrell, S Caillol et al. Chem. Rev., 2016, 116(22), 14181-14224.

    18. [18]

      A E Kadib. ChemSusChem, 2015, 8(2):217-244. 

    19. [19]

      O Mahé, J F Brière, I Dez. Eur. J. Org. Chem., 2015, 2015(12):2559-2578 

    20. [20]

      M G Dekamin, M Azimoshan, L Ramezani. Green Chem., 2013, 15(3), 811-820.

    21. [21]

      S N Rao, D C Mohan, S Adimurthy. Green Chem., 2014, 16(9):4122-4126. 

    22. [22]

      K R Reddy, K Rajgopal, C U Maheswari et al. New J. Chem., 2006, 30(11):1549-1552. 

    23. [23]

      H Kayser, C R Müller, C A García-González et al. Appl. Catal. A, 2012, s445-446(6):180-186.

    24. [24]

      A Ricci, L Bernardi, C Gioia et al. Chem. Commun., 2010, 46(34):6288-6290. 

    25. [25]

      H Dong, J Liu, L Ma et al. Catalysts, 2016, 6(12):186. 

    26. [26]

      J Safari, L Javadian. RSC Adv., 2014, 4(90):48973-48979. 

    27. [27]

      Y Luo, X Pan, Y Ling et al. Cellulose, 2014, 21(3):1873-1883. 

    28. [28]

      G Chen, J Mi, X Wu et al. Int. J. Biol. Macromol., 2011, 49(4):543-547. 

    29. [29]

      R Valentin, B Bonelli, E Garrone et al. Biomacromolecules, 2007, 8(11):3646-3650. 

    30. [30]

      C Paluszkiewicz, E Stodolak, M Hasik et al. Spectrochim. Acta A, 2011, 79(4):784-788 

    31. [31]

      F Min, Q Hu, S Kai. Carbohyd. Polym., 2009, 78(1):66-71. 

    32. [32]

      K Ogawa, S Hirano, T Miyanishi et al. Macromolecules, 1984, 17(4):973-975. 

    33. [33]

      T Yui, K Imada, K Okuyama, et al. Carbohyd. Res., 1992, 229(1):57-74. 

    34. [34]

      P Z Hong, S D Li, C Y Ou et al. J. Appl. Polym. Sci., 2010, 105(2):547-551.

    35. [35]

      M L Deb, P J Bhuyan. Tetrahed. Lett., 2005, 46(38):6453-6456. 

    36. [36]

    37. [37]

  • 加载中
    1. [1]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    8. [8]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    9. [9]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    10. [10]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    11. [11]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    12. [12]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    16. [16]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(9)
  • Abstract views(1580)
  • HTML views(374)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return