Citation: SHEN Dong-ming, CHENG Shi-lin, HAN Bing, ZHONG Tao, LÜ Peng, XING Chuang, GAI Xi-kun, LÜ Cheng-xue, YANG Rui-qin. Research on the performance of Cu/ZnO@H-β-P catalyst in the reaction of LPG preparation from syngas[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1122-1129. shu

Research on the performance of Cu/ZnO@H-β-P catalyst in the reaction of LPG preparation from syngas

  • Corresponding author: LÜ Peng, lvpeng0830@zust.edu.cn
  • Received Date: 10 April 2017
    Revised Date: 2 June 2017

    Fund Project: the National Natural Science Foundation of China 21528302The project was supported by the National Natural Science Foundation of China (21528302), Zhejiang Province Natural Science Foundation (LQ16B060002) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (201611057013)the National Undergraduate Training Programs for Innovation and Entrepreneurship 201611057013Zhejiang Province Natural Science Foundation LQ16B060002

Figures(10)

  • The Cu/ZnO catalyst was prepared by the coprecipitation method, and the H-β zeolite was prepared by the hydrothermal synthesis method, and the bifunctional catalyst Cu/ZnO@H-β-P with core shell structure was prepared by the physical envelope method. The catalysts were used in the reactions of LPG preparation from syngas. The catalysts were characterized by the means of XRD, BET, NH3-TPD and SEM-EDS. The activity of the catalysts was evaluated by a continuous flow fixed bed reactor. The results show that the Cu/ZnO@H-β-P catalyst was the mesoporous material with core shell structure, and the acid intensity of H-β zeolite was changed, and the cascade reactions from methanol to dimethyl ether to LPG were promoted by core-shell synergy in the Cu/ZnO@H-β-P catalyst. The CO conversion and LPG selectivity were higher on the Cu/ZnO@H-β-P catalyst with core shell structure than those on the Mix-Cu/ZnO-H-β catalyst. The catalyst activity was affected by the reaction conditions of space velocity and reaction temperature. The best space velocity and reaction temperature were 2 400 h-1 and 350℃. The CO conversion and LPG selectivity achieved respectively 57.22% and 60.52% in the reaction of LPG preparation from syngas at the best reaction conditions using the Cu/ZnO@H-β-P catalyst.
  • 加载中
    1. [1]

      WANG Li-min. A review for the second spring of China's LPG industry "The 20th international conference on China's LPG"[J]. Int Petrol Econ, 2015,23(4):77-81.  

    2. [2]

      HOU Qing-he, YANG Jing-hua. Comprehensive utilization and source of liquified petroleum gas[J]. Contemp Chem Ind, 2010,39(3):287-289.  

    3. [3]

      GALVIS H M, JONG K P D. Catalysts for production of lower olefins from synthesis aas:a review[J]. ACS Catalysis, 2013,3(9):2130-2149. doi: 10.1021/cs4003436

    4. [4]

      CHEN Y P, XU Y M, CHENG D G, CHEN Y C, CHEN F Q, LU X Y, HUANG Y P, NI S B. C2-C4 hydrocarbons synthesis from syngas over CuO-ZnO-Al2O3/SAPO-34 bifunctional catalyst[J]. J Chem Technol Biotechnol, 2015,90(3):415-422. doi: 10.1002/jctb.2015.90.issue-3

    5. [5]

      MA Xian-gang, GE Qing-jie, FANG Chuan-yan, MA Jun-guo, XU Heng-yong. Hybrid catalysts for liquefied petroleum gas synthesis from syngas[J]. Chin J Catal, 2010,31(12):1501-1506.  

    6. [6]

      FLORES J H, SILVA M I P D. Influence of the preparation method on hybrid catalysts CuO-ZnO-Al2O3 and H-ferrierite for syngas transformation to hydrocarbons via methanol[J]. Catal Lett, 2016,146(8):1505-1516. doi: 10.1007/s10562-016-1771-0

    7. [7]

      LI C M, YUAN X D, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A, 2014,475:155-160. doi: 10.1016/j.apcata.2014.01.025

    8. [8]

      FUJIWARA M, SAKURAI H, SHIOKAWA K, LIZUKA Y. Synthesis of C2+ hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu-Zn-Al oxide and Hβ zeolite using two-stage reactor system under low pressure[J]. Catal Today, 2015,242:255-260. doi: 10.1016/j.cattod.2014.04.032

    9. [9]

      CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016,128(15):4803-4806. doi: 10.1002/ange.201601208

    10. [10]

      LI J J, PAN X L, BAO X H. Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst[J]. Chin J Catal, 2015,36(7):1131-1135. doi: 10.1016/S1872-2067(14)60297-7

    11. [11]

      DAVIS B H. Fischer-Tropsch Synthesis:Reaction mechanisms for iron catalysts[J]. Catal Today, 2009,141(1/2):25-33.

    12. [12]

      TSUBAKI N, FUJIMOTO K. Product control in Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2000,62(2/3):173-186.  

    13. [13]

      ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:tuning the product selectivity[J]. ChemCatChem, 2010,2(9):1030-1058. doi: 10.1002/cctc.201000071

    14. [14]

      MA X G, GE Q J, MA J G, XU H Y. Synthesis of LPG via DME from syngas in two-stage reaction system[J]. Fuel Process Technol, 2013,109:1-6. doi: 10.1016/j.fuproc.2013.01.002

    15. [15]

      GE Q J, LIAN Y, YUAN X D, LI X H, FUJIMOTO K. High performance Cu-ZnO/Pd-β catalysts for syngas to LPG[J]. Catal Commun, 2008,9(2):256-261. doi: 10.1016/j.catcom.2007.06.011

    16. [16]

      ZHANG Q W, LI X H, ASAMI K, ASAOKA S, FUJIMOTO K. Direct synthesis of LPG fuel from syngas with the hybrid catalyst based on modified Pd/SiO2 and zeolite[J]. Catal Today, 2005,104(1):30-36. doi: 10.1016/j.cattod.2005.03.032

    17. [17]

      LI X G, HE J J, MENG M, YONEYAMA Y, TSUBAKI N. One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity[J]. J Catal, 2009,265(1):26-34. doi: 10.1016/j.jcat.2009.04.009

    18. [18]

      QI G X, ZHENG X M, FEI J H, HOU Z Y. A novel catalyst for DME synthesis from CO hydrogenation 1. Activity, structure and surface properties[J]. J Mor Catal A:Chem, 2001,176(1/2):195-203.

    19. [19]

      MORADI G R, NOSRATI S, YARIPOR F. Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas[J]. Catal Commun, 2007,8(3):598-606. doi: 10.1016/j.catcom.2006.08.023

    20. [20]

      XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Ind Eng Chem Res, 2013,52(33):11510-11515. doi: 10.1021/ie400909u

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    7. [7]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    8. [8]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    11. [11]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    18. [18]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    19. [19]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(3)
  • Abstract views(2846)
  • HTML views(953)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return