Citation: LI Xiu-ping, ZHAO Rong-xiang, XING Peng-fei. Preparation of NiWO4/g-C3N4 and its ultra-deep desulfurization properties in ionic liquid[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1340-1348. shu

Preparation of NiWO4/g-C3N4 and its ultra-deep desulfurization properties in ionic liquid

  • Corresponding author: ZHAO Rong-xiang, zylhzrx@126.com
  • Received Date: 12 April 2017
    Revised Date: 27 July 2017

Figures(12)

  • The NiWO4 nanoparticles were synthesized by hydrothermal method. The supported catalysts NiWO4/g-C3N4 were prepared by a simple mixing-calcination method. XRD, FT-IR, EDS, SEM, BET and XPS were used to characterize the morphology and structure of NiWO4/g-C3N4. The prepared NiWO4/g-C3N4 was used as catalyst, hydrogen peroxide as oxidant, 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid ([BMIM]BF4) as extractant for oxidative desulfurization. The effects of catalyst loading, the amount of hydrogen peroxide, ionic liquid and catalyst, reaction temperature, reaction time, and different sulfur compounds on desulfurization efficiency were studied. The desulfurization rate can reach 97.35% at the optimum reaction conditions:5 mL of model oil, 0.2 mL of hydrogen peroxide, 1.0 mL of [BMIM] BF4, 0.03 g of NiWO4/g-C3N4, 80 ℃ of reaction temperature and 140 min of reaction time. The results showed that NiWO4/g-C3N4 had good catalytic stability, and the catalytic activity was not significantly reduced after 5 repeated reactions.
  • 加载中
    1. [1]

      LORENÇON E, ALVES D C B, KRAMBROCK K, ERICK S Á, RESENDE R R, FERLAUTO A S, LAGO R M. Oxidative desulfurization of dibenzothiophene over titanate nanotubes[J]. Fuel, 2014,132:53-61. doi: 10.1016/j.fuel.2014.04.020

    2. [2]

      YAN X M, SU G S, XIONG L. Oxidative desulfurization of diesel oil over Ag-modified mesoporous HPW/SiO2catalyst[J]. J Fuel Chem Technol, 2009,7(3):318-323.  

    3. [3]

      BAZYARI A, KHODADADI A A, MAMAGHANI A H, BEHESHTIAN J, THOMPSON L T, MORTAZAVI Y. Microporous titania-silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization[J]. Appl Catal B:Environ, 2016,180:65-77. doi: 10.1016/j.apcatb.2015.06.011

    4. [4]

      STANISLAUS A, MARAFI A, RANA M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production[J]. Catal Today, 2010,153(1):1-68.  

    5. [5]

      JIANG B, YANG H, ZHANG L, ZHANG R Y, SUN Y L, HUANG Y. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids[J]. Chem Eng J, 2016,283:89-96. doi: 10.1016/j.cej.2015.07.070

    6. [6]

      LI C, LI D, ZOU S, LI Z, YIN J M, WANG A L, CUI Y N, YAO Z L, ZHAO Q. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chem, 2013,15(10):2793-2799. doi: 10.1039/c3gc41067f

    7. [7]

      HUANG L, WANG G, QIN Z, DONG M, DU M X, GE H, LI X K, ZHAO Y D, ZHANG J, HU T D, WANG J G. In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO[J]. Appl Catal B:Environ, 2011,106(1):26-38.  

    8. [8]

      MARGETA D, SERTIĆ-BIONDA K, FOGLAR L. Ultrasound assisted oxidative desulfurization of model diesel fuel[J]. Appl Acoust, 2016,103(2):202-206.  

    9. [9]

      WU L, SITAMRAJU S, XIAO J, LIU B, LI Z, JANIK M J, SONG C S. Effect of liquid-phase O3 oxidation of activated carbon on the adsorption of thiophene[J]. Chem Eng J, 2014,242:211-219. doi: 10.1016/j.cej.2013.12.077

    10. [10]

      BAKAR W A W A, ALI R, KADIR A A A, MOKHTAR W N A W. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel[J]. Fuel Process Technol, 2012,101:78-84. doi: 10.1016/j.fuproc.2012.04.004

    11. [11]

      GARCÍA-GUTIÉRREZ J L, LAREDO G C, GARCÍA-GUTIÉRREZ P, JIMÉNEZ-CRUZ F. Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide[J]. Fuel, 2014,138:118-125. doi: 10.1016/j.fuel.2014.07.049

    12. [12]

      SHI X Y, SUN M, FAN J, WANG P M, MA W J, WEI J F. Deep oxidative desulfurization of benzothiophene and dibenzothiophene with a peroxophosphotungstate-ionic liquid brush assembly[J]. Appl Organomet Chem, 2015,29(9):633-637. doi: 10.1002/aoc.v29.9

    13. [13]

      ZHU W, WU P, YANG L, CHANG Y H, CHAO Y H, LI H M, JIANG Y Q, JIANG W, XUN S H. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels[J]. Chem Eng J, 2013,229(4):250-256.  

    14. [14]

      WAN M W, YEN T F. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted oxidative desulfurization (UAOD) process[J]. Appl Catal A:Gen, 2007,319(1):237-245.  

    15. [15]

      ZHANG M, ZHU W, XUN S, LI H M, GU Q Q, ZHAO Z, WANG Q. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids[J]. Chem Eng J, 2013,220(6):328-336.  

    16. [16]

      SHAN J H, CHEN L, SUN L B, LIU X Q. Adsorptive removal of thiophene by Cu-modified mesoporous silica MCM-48 derived from direct synthesis[J]. Energy Fuels, 2011,25(7):3093-3099. doi: 10.1021/ef200472j

    17. [17]

      ZHU W, XU Y, LI H, DAI B L, XU H, WANG CHAO, CHAO Y H, LIU H. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2, in ionic liquid[J]. Korean J Chem Eng, 2014,31(2):211-217. doi: 10.1007/s11814-013-0224-3

    18. [18]

      SUN B, ZHAO W, WEI L, LI H W, CHEN P. Enhanced resistive switching effect upon illumination in self-assembled NiWO4 nano-nests[J]. Chem Commun, 2014,50(86):13142-5. doi: 10.1039/C4CC05784H

    19. [19]

      LIU D, GUI J, PENG X, YANG S, SUN Z L. Deep oxidative desulfurization of real diesel catalyzed by Na2WO4, in ionic liquid[J]. Energ Source Part A, 2013,35(1):1-8. doi: 10.1080/15567036.2010.503230

    20. [20]

      XING Peng-fei, SHI Wei-wei, LI Xiu-ping, ZHAO Rong-xiang. Preparation of NiWO4 catalyst and its application in the oxidationde sulfurization of model oil[J]. Acta Pet Sin (Pet Process Sect), 2017,33(2):334-342.  

    21. [21]

      XING P F, ZHAO R X, LI X P, GAO X H. Preparation of CoWO4/g-C3N4and its ultra-deep desulfurization property[J]. Aust J Chem, 2017,70(3):271-279. doi: 10.1071/CH16320

    22. [22]

      WANG X C, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009,8(1):76-80. doi: 10.1038/nmat2317

    23. [23]

      JING D, LIU Q, ZHANG Z, LIU X, ZHAO J Q, CHENG S B, ZONG B N, DAI W L. Carbon nitride nanosheets decorated with WO3, nanorods:Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J]. Appl Catal B:Environ, 2015,165:511-518. doi: 10.1016/j.apcatb.2014.10.037

    24. [24]

      YAN H, CHEN Y, XU S. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light[J]. Int J Hydrogen Energy, 2012,37(1):125-133. doi: 10.1016/j.ijhydene.2011.09.072

    25. [25]

      SONG Ji-mei, LIU Xiao-ling, DONG Na, LI Wen-hui, SI Wei, YANG Jie. Preparation and properties of Mesoporous NiWO4 nanospheres[J]. J Anhui Univ(Nat Sci), 2016,40(1):73-79.  

    26. [26]

      GREEN S V, KUZMIN A, PURANS J, GRANQVIST C G, NIKLASSON G A. Structure and composition of sputter-deposited nickel-tungsten oxide films[J]. Thin Solid Films, 2011,519(7):2062-2066. doi: 10.1016/j.tsf.2010.10.033

    27. [27]

      GU Y, CHEN L, SHI L, MA J H, YANG Z, QIAN Y T. Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide[J]. Carbon, 2003,41(13):2674-2676. doi: 10.1016/S0008-6223(03)00357-9

    28. [28]

      TALAPANENI S N, ANANDAN S, MANE G P, ANAND C, DHAWALE D S, VARGHESE S, MANO A, MORI T, VINU A. Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution[J]. J Mater Chem, 2012,22(19):9831-9840. doi: 10.1039/c2jm30229b

    29. [29]

      DONG F, WU L, SUN Y, FU M, WU Z B, LEE S C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. J Mater Chem, 2011,21(39):15171-15174. doi: 10.1039/c1jm12844b

    30. [30]

      NG K T, HERCULES D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976,80(19):2094-2102. doi: 10.1021/j100560a009

    31. [31]

      MOULDER J F, STICKLE W F, SOBOL P E, BOMBEN K D, CHASTAIN J. Handbook of X-ray photoelectron spectroscop[J]. Chem Phys Lett, 1979,220(1):7-10.  

    32. [32]

      MANCHEVA M N, IORDANOVA R S, KLISSURSKI DIMITAR G, TYULIEV G T, KUNEV B N. Direct mechanochemical synthesis of nanocrystalline NiWO4[J]. J Phys Chem C, 2007,111(3):1101-1104. doi: 10.1021/jp065071k

    33. [33]

      ZHANG J, ZHU W, LI H, JIANG W, JIANG Y Q, HUANG W L, YAN Y S. Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids[J]. Green Chem, 2009,11(11):1801-1807. doi: 10.1039/b914130h

    34. [34]

      LI L, ZHANG J, SHEN C, WANG Y J, LUO G S. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation[J]. Fuel, 2015,167:9-16.  

    35. [35]

      LÜ H, REN W, WANG H, WANG Y, CHEN W, SUO Z H. Deep desulfurization of diesel by ionic liquid extraction coupled with catalytic oxidation using an Anderson-type catalyst[(C4H9)4 N]4NiMo6O24H6[J]. Appl Catal A:Gen, 2013,453:376-382. doi: 10.1016/j.apcata.2012.12.047

    36. [36]

      LÜ H, DENG C, REN W, YANG X. Oxidative desulfurization of model diesel using[(C4H9)4N]6Mo7O24, as a catalyst in ionic liquids[J]. Fuel Process Technol, 2014,119(1):87-91.

    37. [37]

      LI Yu-hui, FENG Li-juan, WANG Jing-gang, ZHOU Xuan, CHENG Bin-bin, WANG Xiao-yan, LI Chun-hu. Catalytic oxidative desulfurization of model oil by MoO3/mesoporous Al2O3[J]. Chem J Chin Univ, 2011,32(3):778-782.  

    38. [38]

      SU Jian-xun, AI Dong, ZHAO Rong-xiang, LI Xiu-ping. Study of the preparation of CuWO4/C composite and it's application in oxidative desulfurization of model oil[J]. J Fuel Chem Technol, 2015,43(12):1476-1481. doi: 10.3969/j.issn.0253-2409.2015.12.011 

    39. [39]

      YI N, DONG Y, LU B, DONG H F, ZHANG X P. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids[J]. Fuel, 2013,103(1):997-1002.  

    40. [40]

      OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W H, ISHIHARA A, IMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000,14(6):1232-1239. doi: 10.1021/ef000096i

    41. [41]

      LÜ H Y, GAO J B, JIANG Z X, FEI J, YANG Y X, WANG G, LI C. Ultra-deep desulfurization of diesel by selective oxidation with[C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets[J]. J Catal, 2006,239:369-375. doi: 10.1016/j.jcat.2006.01.025

    42. [42]

      LI Jia-hui, HU Jia, ZHAO Rong-xiang, LI Xiu-ping. Prepartion of amino acid functionalized heteropolyacid salt and its catalytic performance for oxidation desulfurization of model oil[J]. J Fuel Chem Technol, 2014,42(11):1394-1399. doi: 10.3969/j.issn.0253-2409.2014.11.018 

    43. [43]

      ABDALLA Z E A, LI B, TUFAIL A. Preparation of phosphate promoted Na2WO4/Al2O3 catalyst and its application for oxidative desulfurization[J]. J Ind Eng Chem, 2009,15(6):780-783. doi: 10.1016/j.jiec.2009.09.026

    44. [44]

      USUI Y, SATO K A. Green method of adipic acid synthesis:organic solvent-and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide[J]. Green Chem, 2003,5(4):373-375. doi: 10.1039/b305847f

    45. [45]

      EDE S R, KUNDU S. Microwave synthesis of SnWO4 nanoassemblies on DNA scaffold:A novel material for high performance supercapacitor and as catalyst for butanol oxidation[J]. ACS Sustainable Chem Eng, 2015,3(9):2321-2336. doi: 10.1021/acssuschemeng.5b00627

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    6. [6]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    9. [9]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    17. [17]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    18. [18]

      Hui WangHaodong JiDandan ZhangXudong YangHanchun ChenChunqian JiangWeiliang SunJun DuanWen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(16)
  • Abstract views(2924)
  • HTML views(1218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return