CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2
- Corresponding author: ZHANG Yan-jie, yanjiezhang@mju.edu.cn LIN Qi, qlin1990@163.com
Citation:
ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, YE Yuan-song, LOU Ben-yong, ZHENG Guo-cai, LIN Qi. CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(4): 464-473.
LEVALLEY T L, RICHARD A R, FAN M. The progress in water gas shift and steam reforming hydrogen production technologies-A review[J]. Int J Hydrogen Energy, 2014,39(30):16983-17000. doi: 10.1016/j.ijhydene.2014.08.041
YAO S, ZHANG X, ZHOU W, GAO R, XU W, YE Y, LIN L, WEN X, LIU P, CHEN B, CRUMLIN E, GUO J, ZUO Z, LI W, XIE J, LU L, KIELY C J, GU L, SHI C, RODRIGUEZ J A, MA D. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 2017,357(6349):389-393. doi: 10.1126/science.aah4321
STERE C E, ANDERSON J A, CHANSAI S, DELGADO J J, GOGUET A, GRAHAM W G, HARDACRE C, TAYLOR S F R, TU X, WANG Z Y, YANG H. Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis[J]. Angew Chem Int Ed, 2017,56(20):5579-5583. doi: 10.1002/anie.201612370
PAL D B, CHAND R, UPADHYAY S N, MISHRA P K. Performance of water gas shift reaction catalysts:A review[J]. Renewable Sustainable Energy Rev, 2018,93:549-565. doi: 10.1016/j.rser.2018.05.003
ABDEL-MAGEED A M, KUCEROVA G, BANSMANN J, BEHM R J. Active Au species during the low-temperature water gas shift reaction on Au/CeO2:A time-resolved operando XAS and DRIFTS study[J]. ACS Catal, 2017,7(10):6471-6484. doi: 10.1021/acscatal.7b01563
PALMA V, PISANO D, MARTINO M. Structured noble metal-based catalysts for the WGS process intensification[J]. Int J Hydrogen Energy, 2018,43(26):11745-11754. doi: 10.1016/j.ijhydene.2018.01.085
AMMAL S C, HEYDEN A. Water-gas shift activity of atomically dispersed cationic platinum versus metallic platinum clusters on titania supports[J]. ACS Catal, 2017,7(1):301-309. doi: 10.1021/acscatal.6b02764
GUAN H L, LIN J, QIAO B T, MIAO S, WANG A Q, WANG X D, ZHANG T. Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction[J]. AIChE J, 2017,63(6):2081-2088. doi: 10.1002/aic.v63.6
MA Y J, LIU B, JING M M, ZHANG R Y, CHEN J Y, ZHANG Y H, LI J L. Promoted potassium salts based Ru/AC catalysts for water gas shift reaction[J]. Chem Eng J, 2016,287:155-161. doi: 10.1016/j.cej.2015.10.119
LIN J, WANG A Q, QIAO B T, LIU X Y, YANG X F, WANG X D, LIANG J X, LI J X, LIU J Y, ZHANG T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. J Am Chem Soc, 2013,135(41):15314-15317. doi: 10.1021/ja408574m
XU M, YAO S, RAO D, NIU Y, LIU N, PENG M, ZHAI P, MAN Y, ZHENG L, WANG B, ZHANG B, MA D, WEI M. Insights into interfacial synergistic catalysis over Ni@TiO2-x catalyst toward water-gas shift reaction[J]. J Am Chem Soc, 2018,140(36):11241-11251. doi: 10.1021/jacs.8b03117
ZHANG Z, WANG S S, SONG R, CAO T, LUO L, CHEN X, GAO Y, LU J, LI W X, HUANG W. The most active Cu facet for low-temperature water gas shift reaction[J]. Nat Commun, 2017,8488. doi: 10.1038/s41467-017-00620-6
YAN H, QIN X T, YIN Y, TENG Y F, JIN Z, JIA C J. Promoted Cu-Fe3O4 catalysts for low-temperature water gas shift reaction:Optimization of Cu content[J]. Appl Catal B:Environ, 2018,226:182-193. doi: 10.1016/j.apcatb.2017.12.050
CHEN C, ZHAN Y, LI D, ZHANG Y, LIN X, JIANG L, ZHENG Q. Preparation of CuO/CeO2 catalyst with enhanced catalytic performance for water-gas shift reaction in hydrogen production[J]. Energy Technol, 2018,6(6):1096-1103. doi: 10.1002/ente.201700750
CHEN C, ZHAN Y, ZHOU J, LI D, ZHANG Y, LIN X, JIANG L, ZHENG Q. Cu/CeO2 catalyst for water-gas shift reaction:Effect of CeO2 pretreatment[J]. ChemPhysChem, 2018,19(12):1448-1455. doi: 10.1002/cphc.v19.12
MA Y J, LIU B, OUYANG B, LI J L. Production of hydrogen from water-gas shift reaction over Ru-[J]. Int J Hydrogen Energy, 2017,42(7):4146-4154. doi: 10.1016/j.ijhydene.2016.10.111
LI J, TA N, SONG W, ZHAN E, SHEN W. Au/ZrO2 catalysts for low-temperature water gas shift reaction:Influence of particle sizes[J]. Gold Bull, 2009,42(1):48-60. doi: 10.1007/BF03214905
CERÍN M L, HERRERA B, ARAYA P, GRACIA F, TORO-LABBÉ A. Influence of the monoclinic and tetragonal zirconia phases on the water gas shift reaction. A theoretical study[J]. J Mol Model, 2013,19(7):2885-2891. doi: 10.1007/s00894-012-1706-7
KOUVA S, HONKALA K, LEFFERTS L, KANERVO J. Review:Monoclinic zirconia, its surface sites and their interaction with carbon monoxide[J]. Catal Sci Technol, 2015,5:3473-3490. doi: 10.1039/C5CY00330J
KAUPPIK E I, HONKALA K, KRAUSE A O I, KANERVO J M, LEFFERTS L. ZrO2 acting as a redox catalyst[J]. Top Catal, 2016,59(8/9):823-832.
DOW W P, HUANG T J. Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst[J]. J Catal, 1994,147(1):322-332. doi: 10.1006/jcat.1994.1143
KO J B, BAE C M, JUNG Y S, KIM D H. Cu-ZrO2 catalysts for water-gas-shift reaction at low temperatures[J]. Catal Lett, 2005,105(3/4):157-161.
CHEN C, RUAN C, ZHAN Y, LIN X, ZHENG Q, WEI K. The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water-gas-shift performance[J]. Int J Hydrogen Energy, 2014,39(1):317-324. doi: 10.1016/j.ijhydene.2013.10.074
AGUILA G, VALENZUELA A, GUERRERO S, ARAY P. WGS activity of a novel Cu-ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method[J]. Catal Commun, 2013,39:82-85. doi: 10.1016/j.catcom.2013.05.007
TANG Q L, LIU Z P. Identification of the active Cu phase in the water-gas shift reaction over Cu/ZrO2 from first principles[J]. J Phys Chem C, 2010,114(18):8423-8430. doi: 10.1021/jp100864j
ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, LIN Qi, LOU Ben-yong, ZHENG Guo-cai, ZHENG Qi. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. J Fuel Chem Technol, 2017,45(9):1137-1145. doi: 10.3969/j.issn.0253-2409.2017.09.015
SONG L, CAO X B, LI L. Engineering stable surface oxygen vacancies on ZrO2 by hydrogen-etching technology:An efficient support of gold catalysts for water-gas shift reaction[J]. ACS Appl Mater Interfaces, 2018,10(37):31249-31259. doi: 10.1021/acsami.8b07007
ZHANG Y, ZHAN Y, CHEN C, CAO Y, LIN X, ZHENG Q. Highly efficient Au/ZrO2 catalysts for low-temperature water-gas shift reaction:Effect of pre-calcination temperature of ZrO2[J]. Int J Hydrogen Energy, 2012,37(17):12292-12300. doi: 10.1016/j.ijhydene.2012.06.025
ZHANG Y, CHEN C, LIN X, LI D, CHEN X, ZHAN Y, ZHENG Q. CuO/ZrO2 catalysts for water-gas shift reaction:Nature of catalytically active copper species[J]. Int J Hydrogen Energy, 2014,39(8):3746-3754. doi: 10.1016/j.ijhydene.2013.12.161
ZOU Z Q, MENG M, GUO L H, ZHA Y Q. Synthesis and characterization of CuO/Ce1-xTixO2 catalysts used for low-temperature CO oxidation[J]. J Hazard Mater, 2009,163(2/3):835-842.
JACKSON S D, HARGREAVES J S J. Metal oxide catalysis (Vol.2)[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
KWAK J H, HU J, MEI D, YI C, KIM D H, PEDEN C H F, ALLARD L F, SZANYI J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J]. Science, 2009,325(5948):1670-1673. doi: 10.1126/science.1176745
SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption date for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985,57(4):603-619. doi: 10.1351/pac198557040603
WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts:Effects of zirconia phases[J]. Chem Eng J, 2016,293:327-336. doi: 10.1016/j.cej.2016.02.069
HEEMEIER M, FRANK M, LIBUDA J, WOLTER K, KUHLENBECK H, BAUMER M, FREUND H J. The influence of OH groups on the growth of rhodium on alumina:A model study[J]. Catal Lett, 2000,68(1/2):19-24. doi: 10.1023/A:1019058714724
ZHANG X, SHI H, XU B. Vital roles of hydroxyl groups and gold oxidation states in Au/ZrO2 catalysts for 1, 3-butadiene hydrogenation[J]. J Catal, 2011,279(1):75-87. doi: 10.1016/j.jcat.2011.01.002
ZHAI Y, PIERRE D, SI R, DENG W, FERRIN P, NILEKAR A U, PENG G, HERRON J A, BELL D C, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions[J]. Science, 2010,329(5999):1633-1636. doi: 10.1126/science.1192449
SI R, RAITANO J, YI N, ZHANG L, CHAN S, FLYTZANI-STEPHANOPOULOS M. Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts[J]. Catal Today, 2012,180(1):68-80. doi: 10.1016/j.cattod.2011.09.008
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
test conditions: carrier gas, He; m/z = 18; ZrO2 is not subjected to any pretreatments
catalysts prepared with the ZrO2 supports calcined at different temperatures (CO2, m/z = 44; H2, m/z = 2)
reaction conditions: feed gas, 15%CO/55% H2/23% N2/7% CO2; space velocity, 4000 cm3/(g·h); molar ratio of steam to gas 0.4:1