
Citation: ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon[J]. Journal of Fuel Chemistry and Technology, 2016, 44(02): 192-200.

旋转滑动弧氩等离子体裂解甲烷制氢
English
Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon
-
-
-
[1] CHEN F Q,HUANG X Y,CHENG D G,ZHAN X L.Hydrogen production from alcohols and ethers via cold plasma:A review[J].Int J Hydrogen Energy,2014,39(17):9036-9046.[1] CHEN F Q,HUANG X Y,CHENG D G,ZHAN X L.Hydrogen production from alcohols and ethers via cold plasma:A review[J].Int J Hydrogen Energy,2014,39(17):9036-9046.
-
[2] PETITPAS G,ROLLIER J D,DARMON A,GONZALEZ AGUILAR J,METKEMEIJER R,FULCHERI L.A comparative study of non-thermal plasma assisted reforming technologies[J].Int J Hydrogen Energy,2007,32(14):2848-2867.[2] PETITPAS G,ROLLIER J D,DARMON A,GONZALEZ AGUILAR J,METKEMEIJER R,FULCHERI L.A comparative study of non-thermal plasma assisted reforming technologies[J].Int J Hydrogen Energy,2007,32(14):2848-2867.
-
[3] LESUEUR H,CZERNICHOWSKI A,CHAPELLE J.Device for generating low-temperature plasmas by formation of sliding electric discharges:France,2639172[P].1998-11-17.[3] LESUEUR H,CZERNICHOWSKI A,CHAPELLE J.Device for generating low-temperature plasmas by formation of sliding electric discharges:France,2639172[P].1998-11-17.
-
[4] MUTAF YARDIMCI O,SAVELIEV A V,FRIDMAN A A,KENNEDY L A.Thermal and nonthermal regimes of gliding arc discharge in air flow[J].J Appl Phys,2000,87(4):1632-1641.[4] MUTAF YARDIMCI O,SAVELIEV A V,FRIDMAN A A,KENNEDY L A.Thermal and nonthermal regimes of gliding arc discharge in air flow[J].J Appl Phys,2000,87(4):1632-1641.
-
[5] FRIDMAN A,NESTER S,KENNEDY L A,SAVELIEV A,MUTAF-YARDIMCI O.Gliding arc gas discharge[J].Prog Energy Combust,1999,25(2):211-231.[5] FRIDMAN A,NESTER S,KENNEDY L A,SAVELIEV A,MUTAF-YARDIMCI O.Gliding arc gas discharge[J].Prog Energy Combust,1999,25(2):211-231.
-
[6] ZHANG H,DU C M,WU A J,BO Z,YAN J H,LI X D.Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production[J].Int J Hydrogen Energy,2014,39(24):12620-12635.[6] ZHANG H,DU C M,WU A J,BO Z,YAN J H,LI X D.Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production[J].Int J Hydrogen Energy,2014,39(24):12620-12635.
-
[7] LEE H,SEKIGUCHI H.Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge:CH4 reforming as a model reaction[J].J Phys D:Appl Phys,2011,44(27):8295-8300.[7] LEE H,SEKIGUCHI H.Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge:CH4 reforming as a model reaction[J].J Phys D:Appl Phys,2011,44(27):8295-8300.
-
[8] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Plasma-catalytic reforming of methane in AC microsized gliding arc discharge:Effects of input power,reactor thickness,and catalyst existence[J].Chem Eng J,2009,155(3):874-880.[8] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Plasma-catalytic reforming of methane in AC microsized gliding arc discharge:Effects of input power,reactor thickness,and catalyst existence[J].Chem Eng J,2009,155(3):874-880.
-
[9] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration,feed flow rate,electrode gap distance,residence time,and catalyst distance[J].Plasma Chem Plasma Process,2011,31(4):517-534.[9] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration,feed flow rate,electrode gap distance,residence time,and catalyst distance[J].Plasma Chem Plasma Process,2011,31(4):517-534.
-
[10] INDARTO A,CHOI J W,LEE H,SONG H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy,2006,31(14):2986-2995.[10] INDARTO A,CHOI J W,LEE H,SONG H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy,2006,31(14):2986-2995.
-
[11] LEE D H,KIM K T,KANG H S,SONG Y H,PARK J E.NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J].Energy Fuels,2012,26(7):4284-4290.[11] LEE D H,KIM K T,KANG H S,SONG Y H,PARK J E.NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J].Energy Fuels,2012,26(7):4284-4290.
-
[12] YU L,TU X,LI X D,WANG Y,CHI Y,YAN J H.Destruction of acenaphthene,fluorene,anthracene and pyrene by a dc gliding arc plasma reactor[J].J Hazard Mater,2010,180(1-3):449-455.[12] YU L,TU X,LI X D,WANG Y,CHI Y,YAN J H.Destruction of acenaphthene,fluorene,anthracene and pyrene by a dc gliding arc plasma reactor[J].J Hazard Mater,2010,180(1-3):449-455.
-
[13] YAN J H,PENG Z,LU S Y,DU C M,LI X D,CHEN T,NI M J,CEN K F.Destruction of PCDD/Fs by gliding arc discharges[J].J Environ Sci,2007,19(11):1404-1408.[13] YAN J H,PENG Z,LU S Y,DU C M,LI X D,CHEN T,NI M J,CEN K F.Destruction of PCDD/Fs by gliding arc discharges[J].J Environ Sci,2007,19(11):1404-1408.
-
[14] DJEPANG S A,LAMINSI S,NJOYIM-TAMUNGANG E,NGNINTEDEM C,BRISSET J L.Plasma-chemical and photo-catalytic degradation of bromophenol blue[J].Chem Mater Eng,2014,2(1):14-23.[14] DJEPANG S A,LAMINSI S,NJOYIM-TAMUNGANG E,NGNINTEDEM C,BRISSET J L.Plasma-chemical and photo-catalytic degradation of bromophenol blue[J].Chem Mater Eng,2014,2(1):14-23.
-
[15] ITO Y,SHIKI H,TAKIKAWA H,OOTSUKA T,OKAWA T,YAMANAKA S,USUKI E.Low-temperature sintering of indium tin oxide thin film using split gliding arc plasma[J].Jpn J Appl Phys,2008,47(8S2):6956.[15] ITO Y,SHIKI H,TAKIKAWA H,OOTSUKA T,OKAWA T,YAMANAKA S,USUKI E.Low-temperature sintering of indium tin oxide thin film using split gliding arc plasma[J].Jpn J Appl Phys,2008,47(8S2):6956.
-
[16] KIM H S,LEE D H,FRIDMAN A,CHO Y I.Residual effects and energy cost of gliding arc discharge treatment on the inactivation of Escherichia coli in water[J].Int J Heat Mass Transfer,2014,77(0):1075-1083.[16] KIM H S,LEE D H,FRIDMAN A,CHO Y I.Residual effects and energy cost of gliding arc discharge treatment on the inactivation of Escherichia coli in water[J].Int J Heat Mass Transfer,2014,77(0):1075-1083.
-
[17] LEE D H,KIM K T,CHA M S,SONG Y H.Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J].Proc Combust Inst,2007,31(2):3343-3351.[17] LEE D H,KIM K T,CHA M S,SONG Y H.Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J].Proc Combust Inst,2007,31(2):3343-3351.
-
[18] ZHANG H,LI X D,ZHANG Y Q,CHEN T,YAN J H,DU C M.Rotating gliding arc codriven by magnetic field and tangential flow[J].IEEE Trans Plasma Sci,2012,40(12):3493-3498.[18] ZHANG H,LI X D,ZHANG Y Q,CHEN T,YAN J H,DU C M.Rotating gliding arc codriven by magnetic field and tangential flow[J].IEEE Trans Plasma Sci,2012,40(12):3493-3498.
-
[19] JIMÉNEZ M,RINCÓN R,MARINAS A,CALZADA M D.Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow[J].Int J Hydrogen Energy,2013,38(21):8708-8719.[19] JIMÉNEZ M,RINCÓN R,MARINAS A,CALZADA M D.Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow[J].Int J Hydrogen Energy,2013,38(21):8708-8719.
-
[20] 屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].杭州:浙江大学,2007.(TU Xin.Characterization of DC plasma jets aimed at the treatment of hazardous waste[D].Hangzhou:Zhejiang University,2007.)[20] 屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].杭州:浙江大学,2007.(TU Xin.Characterization of DC plasma jets aimed at the treatment of hazardous waste[D].Hangzhou:Zhejiang University,2007.)
-
[21] NIST Atomic Spectra Database[EB/OL].http://www.nist.gov/pml/data/asd.cfm.Html,2015-10-1.[21] NIST Atomic Spectra Database[EB/OL].http://www.nist.gov/pml/data/asd.cfm.Html,2015-10-1.
-
[22] YUBERO C,DIMITRIJEVIC M S,GARCÍA M C,CALZADA M D.Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure[J].Spectrochim Acta,Part B,2007,62(2):169-176.[22] YUBERO C,DIMITRIJEVIC M S,GARCÍA M C,CALZADA M D.Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure[J].Spectrochim Acta,Part B,2007,62(2):169-176.
-
[23] GRIEM H R.Plasma spectroscopy[M].New York:McGraw-Hill,1964:580.[23] GRIEM H R.Plasma spectroscopy[M].New York:McGraw-Hill,1964:580.
-
[24] 齐玉妍.光谱线型法研究介质阻挡放电等离子体参量[D]:保定:河北大学,2008.(QI Yu-yan.Investigation of plasma parameters in dielectric barrier discharge by spectral line profiles[D].Baoding:Hebei University,2008.)[24] 齐玉妍.光谱线型法研究介质阻挡放电等离子体参量[D]:保定:河北大学,2008.(QI Yu-yan.Investigation of plasma parameters in dielectric barrier discharge by spectral line profiles[D].Baoding:Hebei University,2008.)
-
[25] GANGOLI S P.Experimental and modeling study of warm plasmas and their applications[D].Philadelphia:Drexel University,2007.[25] GANGOLI S P.Experimental and modeling study of warm plasmas and their applications[D].Philadelphia:Drexel University,2007.
-
[26] HUDDLESTONE R H,LEONARD S L.Plasma diagnostic techniques[M].New York:Academic Press,1965:201-264.[26] HUDDLESTONE R H,LEONARD S L.Plasma diagnostic techniques[M].New York:Academic Press,1965:201-264.
-
[27] CRISTOFORETTI G,DE GIACOMO A,DELL'AGLIOC M,LEGNAIOLI S,TOGNONI E,PALLESCHI V,OMENETTO N.Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the McWhirter criterion[J].Spectrochim Acta,Part B,2010,65(1):86-95.[27] CRISTOFORETTI G,DE GIACOMO A,DELL'AGLIOC M,LEGNAIOLI S,TOGNONI E,PALLESCHI V,OMENETTO N.Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the McWhirter criterion[J].Spectrochim Acta,Part B,2010,65(1):86-95.
-
[28] 张浩,李晓东,张云卿,张明,杜长明,严建华.氮气气氛下旋转滑动弧重整甲烷制氢实验研究[J].工程热物理学报,2013,34(4):787-790.(ZHANG Hao,LI Xiao-dong,ZHANG Yun-qing,ZHANG Ming,DU Chang-ming,YAN Jian-hua.Experimental research of hydrogen production from methane reforming in nitrogen using a rotating gliding arc reactor[J].J Eng Thermophys,2013,34(4):787-790.)[28] 张浩,李晓东,张云卿,张明,杜长明,严建华.氮气气氛下旋转滑动弧重整甲烷制氢实验研究[J].工程热物理学报,2013,34(4):787-790.(ZHANG Hao,LI Xiao-dong,ZHANG Yun-qing,ZHANG Ming,DU Chang-ming,YAN Jian-hua.Experimental research of hydrogen production from methane reforming in nitrogen using a rotating gliding arc reactor[J].J Eng Thermophys,2013,34(4):787-790.)
-
[29] ZHANG J Q,YANG Y J,ZHANG J S,LIU Q,TAN K R.Non-oxidative coupling of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed microwave plasma[J].Energy Fuels,2002,16(3):687-693.[29] ZHANG J Q,YANG Y J,ZHANG J S,LIU Q,TAN K R.Non-oxidative coupling of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed microwave plasma[J].Energy Fuels,2002,16(3):687-693.
-
[30] PORNMAI K,JINDANIN A,SEKIGUCHI H,CHAVADEJ S.Synthesis gas production from CO2-Containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge[J].Plasma Chem Plasma Process,2012,32(4):723-742.[30] PORNMAI K,JINDANIN A,SEKIGUCHI H,CHAVADEJ S.Synthesis gas production from CO2-Containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge[J].Plasma Chem Plasma Process,2012,32(4):723-742.
-
[31] GARDU O M,PACHECO M,PACHECO J,VALDIVIA R,SANTANA A,LEFORT B,ESTRADA N,RIVERA-RODRÍGUEZ C.Hydrogen production from methane conversion in a gliding arc[J].J Renew Sust Energy,2012,4(2):133-137.[31] GARDU O M,PACHECO M,PACHECO J,VALDIVIA R,SANTANA A,LEFORT B,ESTRADA N,RIVERA-RODRÍGUEZ C.Hydrogen production from methane conversion in a gliding arc[J].J Renew Sust Energy,2012,4(2):133-137.
-
[32] JASIńSKI M,DORS M,MIZERACZYK J.Production of hydrogen via methane reforming using atmospheric pressure microwave plasma[J].J Power Sources,2008,181(1):41-45.[32] JASIńSKI M,DORS M,MIZERACZYK J.Production of hydrogen via methane reforming using atmospheric pressure microwave plasma[J].J Power Sources,2008,181(1):41-45.
-
[33] ONOE K,FUJIE A,YAMAGUCHI T,HATANO Y.Selective synthesis of acetylene from methane by microwave plasma reactions[J].Fuel,1997,76(3):281-282.[33] ONOE K,FUJIE A,YAMAGUCHI T,HATANO Y.Selective synthesis of acetylene from methane by microwave plasma reactions[J].Fuel,1997,76(3):281-282.
-
[34] HSIEH L T,LEE W J,CHEN C Y,CHANG M B,CHANG H C.Converting methane by using an RF plasma reactor[J].Plasma Chem Plasma Process,1998,18(2):215-239.[34] HSIEH L T,LEE W J,CHEN C Y,CHANG M B,CHANG H C.Converting methane by using an RF plasma reactor[J].Plasma Chem Plasma Process,1998,18(2):215-239.
-
[35] AGHAMIR F M,MATIN N S,JALILI A H,ESFARAYENI M H,KHODAGHOLI M A,AHMADI R.Conversion of methane to methanol in an ac dielectric barrier discharge[J].Plasma Sources Sci Technol,2004,13(4):707-711.[35] AGHAMIR F M,MATIN N S,JALILI A H,ESFARAYENI M H,KHODAGHOLI M A,AHMADI R.Conversion of methane to methanol in an ac dielectric barrier discharge[J].Plasma Sources Sci Technol,2004,13(4):707-711.
-
[36] KADO S,SEKINE Y,NOZAKI T,OKAZAKI K.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catal Today,2004,89(1):47-55.[36] KADO S,SEKINE Y,NOZAKI T,OKAZAKI K.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catal Today,2004,89(1):47-55.
-
[37] LI X S,ZHU A M,WANG K J,XU Y,SONG Z M.Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J].Catal Today,2004,98(4):617-624.[37] LI X S,ZHU A M,WANG K J,XU Y,SONG Z M.Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J].Catal Today,2004,98(4):617-624.
-
[38] GUTSOL A,RABINOVICH A,FRIDMAN A.Combustion-assisted plasma in fuel conversion[J].J Phys D:Appl Phys,2011,44:274001.[38] GUTSOL A,RABINOVICH A,FRIDMAN A.Combustion-assisted plasma in fuel conversion[J].J Phys D:Appl Phys,2011,44:274001.
-
[39] FRIDMAN A,CHIROKOV A,GUTSOL A.Non-thermal atmospheric pressure discharges[J].J Phys D:Appl Phys,2005,38(2):R1-R24.[39] FRIDMAN A,CHIROKOV A,GUTSOL A.Non-thermal atmospheric pressure discharges[J].J Phys D:Appl Phys,2005,38(2):R1-R24.
-
-

计量
- PDF下载量: 0
- 文章访问数: 1034
- HTML全文浏览量: 141