旋转滑动弧氩等离子体裂解甲烷制氢

张浩 朱凤森 李晓东 吴昂键 薄拯 岑可法

引用本文: 张浩, 朱凤森, 李晓东, 吴昂键, 薄拯, 岑可法. 旋转滑动弧氩等离子体裂解甲烷制氢[J]. 燃料化学学报, 2016, 44(02): 192-200. shu
Citation:  ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon[J]. Journal of Fuel Chemistry and Technology, 2016, 44(02): 192-200. shu

旋转滑动弧氩等离子体裂解甲烷制氢

    通讯作者: 李晓东
  • 基金项目:

    国家自然科学基金(51576174) (51576174)

    高等学校博士学科点专项科研基金(20120101110099) (20120101110099)

    中央高校基本科研业务费专项资金(2015FZA4011)项目资助. (2015FZA4011)

摘要: 采用切向气流和磁场协同驱动的旋转滑动弧氩等离子体,先通过光谱分析法计算了其电子温度和电子密度,了解其物理特性,将其应用于甲烷裂解制氢,研究了进气流量和CH4/Ar比对反应效果的影响。结果表明,该滑动弧系统电子温度为1.0-2.0 eV,电子密度高达1015 cm-3,是介于热与低温等离子体之间的一种等离子体形式,具有独特的物理特性,可以在达到较高反应效率的同时,保持较大的处理量;在CH4裂解制氢实验中,CH4转化率可达22.1%-70.2%,并随进气流量和CH4/Ar比的增大均逐渐降低;H2选择性为21.2%-61.2%,并随进气流量的增大先基本不变后有所增大,随CH4/Ar比的增大逐渐降低;与应用于甲烷裂解的不同形式的低温等离子体对比(如微波、射频、介质阻挡放电等)可以发现,旋转滑动弧在获得较高甲烷转化率、较高H2选择性和较低制氢能耗的同时,还可以保持较大的处理量,即进气流量可达6-20 L/min。

English

  • 
    1. [1] CHEN F Q,HUANG X Y,CHENG D G,ZHAN X L.Hydrogen production from alcohols and ethers via cold plasma:A review[J].Int J Hydrogen Energy,2014,39(17):9036-9046.[1] CHEN F Q,HUANG X Y,CHENG D G,ZHAN X L.Hydrogen production from alcohols and ethers via cold plasma:A review[J].Int J Hydrogen Energy,2014,39(17):9036-9046.

    2. [2] PETITPAS G,ROLLIER J D,DARMON A,GONZALEZ AGUILAR J,METKEMEIJER R,FULCHERI L.A comparative study of non-thermal plasma assisted reforming technologies[J].Int J Hydrogen Energy,2007,32(14):2848-2867.[2] PETITPAS G,ROLLIER J D,DARMON A,GONZALEZ AGUILAR J,METKEMEIJER R,FULCHERI L.A comparative study of non-thermal plasma assisted reforming technologies[J].Int J Hydrogen Energy,2007,32(14):2848-2867.

    3. [3] LESUEUR H,CZERNICHOWSKI A,CHAPELLE J.Device for generating low-temperature plasmas by formation of sliding electric discharges:France,2639172[P].1998-11-17.[3] LESUEUR H,CZERNICHOWSKI A,CHAPELLE J.Device for generating low-temperature plasmas by formation of sliding electric discharges:France,2639172[P].1998-11-17.

    4. [4] MUTAF YARDIMCI O,SAVELIEV A V,FRIDMAN A A,KENNEDY L A.Thermal and nonthermal regimes of gliding arc discharge in air flow[J].J Appl Phys,2000,87(4):1632-1641.[4] MUTAF YARDIMCI O,SAVELIEV A V,FRIDMAN A A,KENNEDY L A.Thermal and nonthermal regimes of gliding arc discharge in air flow[J].J Appl Phys,2000,87(4):1632-1641.

    5. [5] FRIDMAN A,NESTER S,KENNEDY L A,SAVELIEV A,MUTAF-YARDIMCI O.Gliding arc gas discharge[J].Prog Energy Combust,1999,25(2):211-231.[5] FRIDMAN A,NESTER S,KENNEDY L A,SAVELIEV A,MUTAF-YARDIMCI O.Gliding arc gas discharge[J].Prog Energy Combust,1999,25(2):211-231.

    6. [6] ZHANG H,DU C M,WU A J,BO Z,YAN J H,LI X D.Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production[J].Int J Hydrogen Energy,2014,39(24):12620-12635.[6] ZHANG H,DU C M,WU A J,BO Z,YAN J H,LI X D.Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production[J].Int J Hydrogen Energy,2014,39(24):12620-12635.

    7. [7] LEE H,SEKIGUCHI H.Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge:CH4 reforming as a model reaction[J].J Phys D:Appl Phys,2011,44(27):8295-8300.[7] LEE H,SEKIGUCHI H.Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge:CH4 reforming as a model reaction[J].J Phys D:Appl Phys,2011,44(27):8295-8300.

    8. [8] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Plasma-catalytic reforming of methane in AC microsized gliding arc discharge:Effects of input power,reactor thickness,and catalyst existence[J].Chem Eng J,2009,155(3):874-880.[8] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Plasma-catalytic reforming of methane in AC microsized gliding arc discharge:Effects of input power,reactor thickness,and catalyst existence[J].Chem Eng J,2009,155(3):874-880.

    9. [9] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration,feed flow rate,electrode gap distance,residence time,and catalyst distance[J].Plasma Chem Plasma Process,2011,31(4):517-534.[9] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration,feed flow rate,electrode gap distance,residence time,and catalyst distance[J].Plasma Chem Plasma Process,2011,31(4):517-534.

    10. [10] INDARTO A,CHOI J W,LEE H,SONG H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy,2006,31(14):2986-2995.[10] INDARTO A,CHOI J W,LEE H,SONG H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy,2006,31(14):2986-2995.

    11. [11] LEE D H,KIM K T,KANG H S,SONG Y H,PARK J E.NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J].Energy Fuels,2012,26(7):4284-4290.[11] LEE D H,KIM K T,KANG H S,SONG Y H,PARK J E.NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J].Energy Fuels,2012,26(7):4284-4290.

    12. [12] YU L,TU X,LI X D,WANG Y,CHI Y,YAN J H.Destruction of acenaphthene,fluorene,anthracene and pyrene by a dc gliding arc plasma reactor[J].J Hazard Mater,2010,180(1-3):449-455.[12] YU L,TU X,LI X D,WANG Y,CHI Y,YAN J H.Destruction of acenaphthene,fluorene,anthracene and pyrene by a dc gliding arc plasma reactor[J].J Hazard Mater,2010,180(1-3):449-455.

    13. [13] YAN J H,PENG Z,LU S Y,DU C M,LI X D,CHEN T,NI M J,CEN K F.Destruction of PCDD/Fs by gliding arc discharges[J].J Environ Sci,2007,19(11):1404-1408.[13] YAN J H,PENG Z,LU S Y,DU C M,LI X D,CHEN T,NI M J,CEN K F.Destruction of PCDD/Fs by gliding arc discharges[J].J Environ Sci,2007,19(11):1404-1408.

    14. [14] DJEPANG S A,LAMINSI S,NJOYIM-TAMUNGANG E,NGNINTEDEM C,BRISSET J L.Plasma-chemical and photo-catalytic degradation of bromophenol blue[J].Chem Mater Eng,2014,2(1):14-23.[14] DJEPANG S A,LAMINSI S,NJOYIM-TAMUNGANG E,NGNINTEDEM C,BRISSET J L.Plasma-chemical and photo-catalytic degradation of bromophenol blue[J].Chem Mater Eng,2014,2(1):14-23.

    15. [15] ITO Y,SHIKI H,TAKIKAWA H,OOTSUKA T,OKAWA T,YAMANAKA S,USUKI E.Low-temperature sintering of indium tin oxide thin film using split gliding arc plasma[J].Jpn J Appl Phys,2008,47(8S2):6956.[15] ITO Y,SHIKI H,TAKIKAWA H,OOTSUKA T,OKAWA T,YAMANAKA S,USUKI E.Low-temperature sintering of indium tin oxide thin film using split gliding arc plasma[J].Jpn J Appl Phys,2008,47(8S2):6956.

    16. [16] KIM H S,LEE D H,FRIDMAN A,CHO Y I.Residual effects and energy cost of gliding arc discharge treatment on the inactivation of Escherichia coli in water[J].Int J Heat Mass Transfer,2014,77(0):1075-1083.[16] KIM H S,LEE D H,FRIDMAN A,CHO Y I.Residual effects and energy cost of gliding arc discharge treatment on the inactivation of Escherichia coli in water[J].Int J Heat Mass Transfer,2014,77(0):1075-1083.

    17. [17] LEE D H,KIM K T,CHA M S,SONG Y H.Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J].Proc Combust Inst,2007,31(2):3343-3351.[17] LEE D H,KIM K T,CHA M S,SONG Y H.Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J].Proc Combust Inst,2007,31(2):3343-3351.

    18. [18] ZHANG H,LI X D,ZHANG Y Q,CHEN T,YAN J H,DU C M.Rotating gliding arc codriven by magnetic field and tangential flow[J].IEEE Trans Plasma Sci,2012,40(12):3493-3498.[18] ZHANG H,LI X D,ZHANG Y Q,CHEN T,YAN J H,DU C M.Rotating gliding arc codriven by magnetic field and tangential flow[J].IEEE Trans Plasma Sci,2012,40(12):3493-3498.

    19. [19] JIMÉNEZ M,RINCÓN R,MARINAS A,CALZADA M D.Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow[J].Int J Hydrogen Energy,2013,38(21):8708-8719.[19] JIMÉNEZ M,RINCÓN R,MARINAS A,CALZADA M D.Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow[J].Int J Hydrogen Energy,2013,38(21):8708-8719.

    20. [20] 屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].杭州:浙江大学,2007.(TU Xin.Characterization of DC plasma jets aimed at the treatment of hazardous waste[D].Hangzhou:Zhejiang University,2007.)[20] 屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].杭州:浙江大学,2007.(TU Xin.Characterization of DC plasma jets aimed at the treatment of hazardous waste[D].Hangzhou:Zhejiang University,2007.)

    21. [21] NIST Atomic Spectra Database[EB/OL].http://www.nist.gov/pml/data/asd.cfm.Html,2015-10-1.[21] NIST Atomic Spectra Database[EB/OL].http://www.nist.gov/pml/data/asd.cfm.Html,2015-10-1.

    22. [22] YUBERO C,DIMITRIJEVIC M S,GARCÍA M C,CALZADA M D.Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure[J].Spectrochim Acta,Part B,2007,62(2):169-176.[22] YUBERO C,DIMITRIJEVIC M S,GARCÍA M C,CALZADA M D.Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure[J].Spectrochim Acta,Part B,2007,62(2):169-176.

    23. [23] GRIEM H R.Plasma spectroscopy[M].New York:McGraw-Hill,1964:580.[23] GRIEM H R.Plasma spectroscopy[M].New York:McGraw-Hill,1964:580.

    24. [24] 齐玉妍.光谱线型法研究介质阻挡放电等离子体参量[D]:保定:河北大学,2008.(QI Yu-yan.Investigation of plasma parameters in dielectric barrier discharge by spectral line profiles[D].Baoding:Hebei University,2008.)[24] 齐玉妍.光谱线型法研究介质阻挡放电等离子体参量[D]:保定:河北大学,2008.(QI Yu-yan.Investigation of plasma parameters in dielectric barrier discharge by spectral line profiles[D].Baoding:Hebei University,2008.)

    25. [25] GANGOLI S P.Experimental and modeling study of warm plasmas and their applications[D].Philadelphia:Drexel University,2007.[25] GANGOLI S P.Experimental and modeling study of warm plasmas and their applications[D].Philadelphia:Drexel University,2007.

    26. [26] HUDDLESTONE R H,LEONARD S L.Plasma diagnostic techniques[M].New York:Academic Press,1965:201-264.[26] HUDDLESTONE R H,LEONARD S L.Plasma diagnostic techniques[M].New York:Academic Press,1965:201-264.

    27. [27] CRISTOFORETTI G,DE GIACOMO A,DELL'AGLIOC M,LEGNAIOLI S,TOGNONI E,PALLESCHI V,OMENETTO N.Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the McWhirter criterion[J].Spectrochim Acta,Part B,2010,65(1):86-95.[27] CRISTOFORETTI G,DE GIACOMO A,DELL'AGLIOC M,LEGNAIOLI S,TOGNONI E,PALLESCHI V,OMENETTO N.Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the McWhirter criterion[J].Spectrochim Acta,Part B,2010,65(1):86-95.

    28. [28] 张浩,李晓东,张云卿,张明,杜长明,严建华.氮气气氛下旋转滑动弧重整甲烷制氢实验研究[J].工程热物理学报,2013,34(4):787-790.(ZHANG Hao,LI Xiao-dong,ZHANG Yun-qing,ZHANG Ming,DU Chang-ming,YAN Jian-hua.Experimental research of hydrogen production from methane reforming in nitrogen using a rotating gliding arc reactor[J].J Eng Thermophys,2013,34(4):787-790.)[28] 张浩,李晓东,张云卿,张明,杜长明,严建华.氮气气氛下旋转滑动弧重整甲烷制氢实验研究[J].工程热物理学报,2013,34(4):787-790.(ZHANG Hao,LI Xiao-dong,ZHANG Yun-qing,ZHANG Ming,DU Chang-ming,YAN Jian-hua.Experimental research of hydrogen production from methane reforming in nitrogen using a rotating gliding arc reactor[J].J Eng Thermophys,2013,34(4):787-790.)

    29. [29] ZHANG J Q,YANG Y J,ZHANG J S,LIU Q,TAN K R.Non-oxidative coupling of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed microwave plasma[J].Energy Fuels,2002,16(3):687-693.[29] ZHANG J Q,YANG Y J,ZHANG J S,LIU Q,TAN K R.Non-oxidative coupling of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed microwave plasma[J].Energy Fuels,2002,16(3):687-693.

    30. [30] PORNMAI K,JINDANIN A,SEKIGUCHI H,CHAVADEJ S.Synthesis gas production from CO2-Containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge[J].Plasma Chem Plasma Process,2012,32(4):723-742.[30] PORNMAI K,JINDANIN A,SEKIGUCHI H,CHAVADEJ S.Synthesis gas production from CO2-Containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge[J].Plasma Chem Plasma Process,2012,32(4):723-742.

    31. [31] GARDU O M,PACHECO M,PACHECO J,VALDIVIA R,SANTANA A,LEFORT B,ESTRADA N,RIVERA-RODRÍGUEZ C.Hydrogen production from methane conversion in a gliding arc[J].J Renew Sust Energy,2012,4(2):133-137.[31] GARDU O M,PACHECO M,PACHECO J,VALDIVIA R,SANTANA A,LEFORT B,ESTRADA N,RIVERA-RODRÍGUEZ C.Hydrogen production from methane conversion in a gliding arc[J].J Renew Sust Energy,2012,4(2):133-137.

    32. [32] JASIńSKI M,DORS M,MIZERACZYK J.Production of hydrogen via methane reforming using atmospheric pressure microwave plasma[J].J Power Sources,2008,181(1):41-45.[32] JASIńSKI M,DORS M,MIZERACZYK J.Production of hydrogen via methane reforming using atmospheric pressure microwave plasma[J].J Power Sources,2008,181(1):41-45.

    33. [33] ONOE K,FUJIE A,YAMAGUCHI T,HATANO Y.Selective synthesis of acetylene from methane by microwave plasma reactions[J].Fuel,1997,76(3):281-282.[33] ONOE K,FUJIE A,YAMAGUCHI T,HATANO Y.Selective synthesis of acetylene from methane by microwave plasma reactions[J].Fuel,1997,76(3):281-282.

    34. [34] HSIEH L T,LEE W J,CHEN C Y,CHANG M B,CHANG H C.Converting methane by using an RF plasma reactor[J].Plasma Chem Plasma Process,1998,18(2):215-239.[34] HSIEH L T,LEE W J,CHEN C Y,CHANG M B,CHANG H C.Converting methane by using an RF plasma reactor[J].Plasma Chem Plasma Process,1998,18(2):215-239.

    35. [35] AGHAMIR F M,MATIN N S,JALILI A H,ESFARAYENI M H,KHODAGHOLI M A,AHMADI R.Conversion of methane to methanol in an ac dielectric barrier discharge[J].Plasma Sources Sci Technol,2004,13(4):707-711.[35] AGHAMIR F M,MATIN N S,JALILI A H,ESFARAYENI M H,KHODAGHOLI M A,AHMADI R.Conversion of methane to methanol in an ac dielectric barrier discharge[J].Plasma Sources Sci Technol,2004,13(4):707-711.

    36. [36] KADO S,SEKINE Y,NOZAKI T,OKAZAKI K.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catal Today,2004,89(1):47-55.[36] KADO S,SEKINE Y,NOZAKI T,OKAZAKI K.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catal Today,2004,89(1):47-55.

    37. [37] LI X S,ZHU A M,WANG K J,XU Y,SONG Z M.Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J].Catal Today,2004,98(4):617-624.[37] LI X S,ZHU A M,WANG K J,XU Y,SONG Z M.Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J].Catal Today,2004,98(4):617-624.

    38. [38] GUTSOL A,RABINOVICH A,FRIDMAN A.Combustion-assisted plasma in fuel conversion[J].J Phys D:Appl Phys,2011,44:274001.[38] GUTSOL A,RABINOVICH A,FRIDMAN A.Combustion-assisted plasma in fuel conversion[J].J Phys D:Appl Phys,2011,44:274001.

    39. [39] FRIDMAN A,CHIROKOV A,GUTSOL A.Non-thermal atmospheric pressure discharges[J].J Phys D:Appl Phys,2005,38(2):R1-R24.[39] FRIDMAN A,CHIROKOV A,GUTSOL A.Non-thermal atmospheric pressure discharges[J].J Phys D:Appl Phys,2005,38(2):R1-R24.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1034
  • HTML全文浏览量:  141
文章相关
  • 收稿日期:  2015-06-09
  • 网络出版日期:  2015-09-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章