Citation: LI Huan-long, JIN Jing, HOU Feng-xiao, WANG Yong-zhen, ZHAI Zhong-yuan, ZHAO Bing. Effect of Fe and point deficiency on adsorption behavior of NH3 on coke surface: A density functional theory study[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1505-1512. shu

Effect of Fe and point deficiency on adsorption behavior of NH3 on coke surface: A density functional theory study

  • Corresponding author: JIN Jing, alicejin001@163.com
  • Received Date: 17 July 2018
    Revised Date: 27 September 2018

    Fund Project: Thirteenth Five-Year″ Plan for Science & Technology Support of China 2017YFF0209800The project was supported by Thirteenth Five-Year″ Plan for Science & Technology Support of China (2017YFF0209800)

Figures(10)

  • Effect of Fe and point deficiency on adsorption behavior of NH3 on coke surface was studied using density functional theory and graphene model with periodic boundary conditions. The results show that the adsorption of NH3 on surface of point-defective graphene belongs to physical adsorption with binding energy of -0.381 eV. The adsorption of NH3 on surface of Fe-modified-graphene belongs to chemical adsorption with energy of -1.442 eV. The adsorption energy of NH3 in the presence of Fe atom or point defect is greater than that of NH3 on the surface of intact graphene. In addition, coexistence of Fe atom and point defect has a synergistic effect on adsorption of NH3 with binding energy of -3.538 eV, which is much higher than the sum of adsorption energy of NH3 in the presence of the two alone. There is more charge transferring among Fe atom, graphene surface and NH3 molecule, which can explain the synergistic effect of coexistence of Fe and point defect.
  • 加载中
    1. [1]

      REN Q, ZHAO C, XIN W, CAI L, CHEN X, SHEN J, TANG G, WANG Z. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis, 2009,85(1/2):447-453.  

    2. [2]

      AHMAD T, AWAN I A, NISAR J, AHMAD I. Influence of inherent minerals and pyrolysis temperature on the yield of pyrolysates of some Pakistani coals[J]. Energy Convers Manage, 2009,50(5):1163-1171. doi: 10.1016/j.enconman.2009.01.031

    3. [3]

      GU Ying, LIU Xiao-wei, QIAO Yu, ZHAO Bo, ZHOU Jun-bo, XU Ming-hou. Effect of FeCl3 on nitrogen distribution in coal pyrolysis[J]. Proc CSEE, 2011,31(35):59-64.  

    4. [4]

      GUAN R, LI W, CHEN H, LI B. The release of nitrogen species during pyrolysis of model chars loaded with different additives[J]. Fuel Process Technol, 2004,85(8/10):1025-1037.  

    5. [5]

      CHUN Yan-ni, ZHANG Jun, TIAN Yu. The effect of mineral matter on the formation of NOx precursors during microwave-induced pyrolysis of sewage sludge[J]. Environ Eng, 2012,30(s2):481-485.  

    6. [6]

      HOU Feng-xiao, JIN Jing, LIN Yu-yu, GUO Ming-shan, SHEN Hong-hao, XIAO Kai-hua, LI Shang. Influence of Fe2O3 on sludge pyrolysis characteristics and partial transformation mechanisms of NOx precursors[J]. J Combust Sci Technol, 2017,23(1):90-95.  

    7. [7]

      XU C, TSUBOUCHI N, HASHIMOTO H, OHTSUKA Y. Catalytic decomposition of ammonia gas with metal cations present naturally in low rank coals[J]. Fuel, 2005,84(14/15):1957-1967.  

    8. [8]

      XU Ming-yan, CHANG Li-ping. Study on the conversion of nitrogen in the coal into N2 during pyrolysis[J]. Coal Chem Ind, 2005,33(6):36-40. doi: 10.3969/j.issn.1005-9598.2005.06.009

    9. [9]

      OHTSUKA Y, XU C, KONG D, TSUBOUCHI N. Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel, 2004,83(6):685-692. doi: 10.1016/j.fuel.2003.05.002

    10. [10]

      TSUBOUCHI N, HASHIMOTO H, OHTSUKA Y. Catalytic performance of limonite in the decomposition of ammonia in the coexistence of typical fuel gas components produced in an air-blown coal gasification process[J]. Energy Fuels, 2007,21(6):3063-3069. doi: 10.1021/ef070096j

    11. [11]

      MORI H, KENJI ASAMI A, OHTSUKA Y. Role of iron catalyst in fate of fuel nitrogen during coal pyrolysis[J]. Energy Fuels, 1996,10(4):1022-1027.  

    12. [12]

      TSUBOUCHI N, OHTSUKA Y. Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen[J]. Fuel Process Technol, 2008,89(4):379-390.  

    13. [13]

      LU Jun-fu, KE Xi-wei, CAI Run-xia, ZHANG Man, WU Yu-xing, YANG Hai-rui, ZHANG Hai. Research progress on the kinetics of NOx reduction over char in fluidized bed combusition[J]. Coal Convers, 2018,41(1):1-12. doi: 10.3969/j.issn.1004-4248.2018.01.001

    14. [14]

      XU Xiu-feng, GU Yong-da, CHEN Song-ying. Effect of iron addition on transformation of nitrogen during coal pyrolysis[J]. J Fuel Chem Technol, 1998,26(l):18-23.  

    15. [15]

      LIU L, JIN J, LIN Y, HOU F, LI S. The effect of calcium on nitric oxide heterogeneous adsorption on carbon:A first-principles study[J]. Energy, 2016,106:212-220. doi: 10.1016/j.energy.2016.02.148

    16. [16]

      AND T K, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999,103(17):275-278.  

    17. [17]

      ZHANG H, JIANG X, LIU J, SHEN J. New insightsinto the heterogeneous reduction reaction between NO and char-bound nitrogen[J]. Ind Eng Chem Res, 2014,53(15):6307-6315. doi: 10.1021/ie403920j

    18. [18]

      DENIS P A, IRIBARNE F. Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene[J]. Chem Phys, 2014,430(2):1-6.  

    19. [19]

      WANG Ze-zhong. Effect of microstructure of coal char on NOx reduction by reburning[D]. Changsha: Changsha University of Science & Technology, 2015. 

    20. [20]

      ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Yu-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. J Fuel Chem Technol, 2017,45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001 

    21. [21]

      LI X, HAYASHI J I, LI C. FT-Raman spectroscopic study of the eVolution of char structure during the pyrolysis of a victorian brown coal[J]. Fuel, 2006,85(12/13):1700-1707.  

    22. [22]

      OUYANG Fang-ping, WANG Huan-you, LI Ming-jun, XIAO Jin, XU Hui. Effect of single vacancy defects on the electronic structure and transport properties of graphite nanobelts[J]. Acta Phys Sin, 2008,57(11):7132-7138.  

    23. [23]

      OUYANG Fang-ping, XU Hui, LIN Feng. Study on electronic structure and transport properties of double vacancy defect graphite nanobelts[J]. Acta Phys Sin, 2009,58(6):4132-4136. doi: 10.3321/j.issn:1000-3290.2009.06.081

    24. [24]

      YANG P, LI X, ZHAO Y. Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons[J]. Phys Lett A, 2013,377(34/36):2141-2146.  

    25. [25]

      DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990,92(1):508-517.  

    26. [26]

      FU X, WAROT FONROSE B, ARRAS R. Generalized gradient approximation made simple[J]. Appl Phys Lett, 2015,125(6):89-96.  

    27. [27]

      TKATCHENKO A, SCHEFFLER M. Accurate van-der-waals interactions from (semi)-local density functional theory[C]. APS Meeting Abstracts, 2009. 

    28. [28]

      WANG M, GUO Y, WANG Q, ZHANG J, HUANG J, LU X, WANG K, ZHANG H, LENG Y. Density functional theory study of interactions between glycine and TiO2/graphene nanocomposites[J]. Chem Phys Lett, 2014,599(4):86-91.  

    29. [29]

      CHARLES W, BAUSCHLICHER J, ALESSANDRA R. Binding of graphite and to graphite and to a(9, 0) carbon nanotube[J]. Phys Rev B, 2004,70(11):2516-2528.  

    30. [30]

      BAI L, ZHOU Z. Computational study of B-or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors[J]. Carbon, 2007,45(10):2105-2110. doi: 10.1016/j.carbon.2007.05.019

    31. [31]

      ZHANG Y, CHEN Y, ZHOU K, LIU C, ZENG J, ZHANG H, PENG Y. Improving gas sensing properties of graphene by introducing dopants and defects:A first-principles study[J]. Nanotechnology, 2009,20(18):1-23.  

    32. [32]

      WIENER G W, BERGER J A. Structure and magnetic properties of some transition metal nitrides[J]. JOM, 1955,7(2):360-368. doi: 10.1007/BF03377510

    33. [33]

      YU Seng. Adsorption properties of graphene modified by transition metal[D]. Jilin: Jilin University, 2014. 

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    16. [16]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    17. [17]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    18. [18]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    19. [19]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(25)
  • Abstract views(1193)
  • HTML views(255)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return