Citation: WANG Hong-hong, LIU Li-jun, GONG Shu-wen. Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 303-310. shu

Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst

  • Corresponding author: LIU Li-jun, liulijun@lcu.edu.cn GONG Shu-wen, gongshw@lcu.edu.cn
  • Received Date: 10 November 2016
    Revised Date: 13 January 2017

    Fund Project: the Doctor Foundation of Shandong Province BS2010CL011the National Natural Science Foundation of China 21101086

Figures(6)

  • A 12-phosphotungstic acid (PTA)-based esterification catalyst was prepared by modifying PTA with 1, 2, 3-trizaole-4, 5-dicarboxylic acid (TDA). The obtained TDA-PTA sample was characterized with XRD, FT-IR, SEM, TG and potentiometric titration techniques, and its catalytic properties for esterification of oleic acid with methanol were studied. In addition, the effects of reaction conditions, including catalyst amount, oleic acid/alcohol molar ratio, reaction time and reaction temperature, on its catalytic performance were investigated. After modification with TDA, although the Keggin structure of PTA is kep and the sample shows strong acidity, the particle morphology changes to regular spheres. In particular, the sample exhibits high catalytic activity and stability in esterification of oleic acid with methanol. The modification of PTA by TDA effectively prevents PTA from dissolving in the reaction mixture, and thus, the TDA-PTA can be recycled at least six runs without severe loss of catalytic activity, showing that it is a good heterogeneous catalyst for esterification.
  • 加载中
    1. [1]

      AHMED N, SIDDIQUI Z N. Sulphated silica tungstic acid as a highly efficient and recyclable solid acid catalyst for the synthesis of tetrahydropyrimidines and dihydropyrimidines[J]. J Mol Catal A:Gen, Chem, 2014,387(6):45-56.  

    2. [2]

      NOSHADI I, KANJILAL B, DU S C, BOLLAS G M, SUIB S L, PROVATAS A, LIU F J, PARNAS R S. Catalyzed production of biodiesel and bio-chemicals from brown grease using Ionic Liquid functionalized ordered mesoporous polymer[J]. Appl Energy, 2014,129:112-122. doi: 10.1016/j.apenergy.2014.04.090

    3. [3]

      YAN Y J, LI X, WANG G L, GUI X H, LI G L, SU F, WANG X F, LIU T. Biotechnological preparation of biodiesel and its high-valued derivatives:A review[J]. Appl Energy, 2014,113:1614-1631. doi: 10.1016/j.apenergy.2013.09.029

    4. [4]

      LIU R L, GAO X Y, AN L, MA J, ZHANG J F, ZHANG Z Q. Fabrication of magnetic carbonaceous solid acids from banana peel for the esterification of oleic acid[J]. RSC Adv, 2015,5(10):143-151.  

    5. [5]

      ZHU S H, GAO X Q, DONG F, ZHU Y L, ZHANG H Y, LI Y W. Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid[J]. J Catal, 2013,306(10):155-163.  

    6. [6]

      LEUNG D Y C, WU X, LEUNG M K H. A review on biodiesel production using catalyzed transesterification[J]. Appl Energy, 2010,87(4):1083-1095. doi: 10.1016/j.apenergy.2009.10.006

    7. [7]

      SARKAR A, GHOSH S K, PRAMANIK P. Investigation of the catalytic efficiency of a new mesoporous catalyst SnO2/WO3 towards oleic acid esterification[J]. J Mol Catal A:Chem, 2010,327(1):73-79.  

    8. [8]

      SHU Q, NAWAZ Z, GAO J X, LIAO Y H, ZHANG Q, WANG D Z, WANG J F. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst:Reaction and separation[J]. Bioresour Technol, 2010,101(14):5374-5384. doi: 10.1016/j.biortech.2010.02.050

    9. [9]

      FAUZI A H M, AMIN N A S, MAT R. Esterification of oleic acid to biodiesel using magnetic ionic liquid:Multi-objective optimization and kinetic study[J]. Appl Energy, 2014,114(114):809-818.  

    10. [10]

      ARANDA D, SANTOS R, TAPANES N, RAMOS A, ANTUNES O. Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids[J]. Catal Lett, 2008,122(1):20-25.  

    11. [11]

      LIU T, LI Z, LI W, SHI C, WANG Y. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol[J]. Bioresour Technol, 2013,133(2):618-621.  

    12. [12]

      PARK J Y, KIM D K, LEE J S. Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst[J]. Bioresour Technol, 2010,101(s1):S62-S65.  

    13. [13]

      OLIVEIRA C F, DEZANETI L M, GARCIA F A C, DE MACEDO J L, DIAS J A, DIAS S C L, ALVIM K S P. Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia[J]. Appl Catal A:Gen, 2010,372(2):153-161. doi: 10.1016/j.apcata.2009.10.027

    14. [14]

      OKUHARA T. Water-tolerant solid acid catalysts[J]. Chem Rev, 2002,102(3):3641-3666.  

    15. [15]

      KIM H J, JEON Y K, PARK J I, SHUL Y G. Heterocycle-modified 12-tungstophosphoric acid as heterogeneous catalyst for epoxidation of propylene with hydrogen peroxide[J]. J Mol Catal A:Chem, 2013,378(11):232-237.  

    16. [16]

      LI J, LI D F, XIE J Y, LIU Y Q, GUO Z J, WANG Q, LYU Y, ZHOU Y, WANG J. Pyrazinium polyoxometalate tetrakaidecahedron-like crystals esterify oleic acid with equimolar methanol at room temperature[J]. J Catal, 2016,339:123-134. doi: 10.1016/j.jcat.2016.03.036

    17. [17]

      PARIDA K M, MALLICK S. Silicotungstic acid supported zirconia:An effective catalyst for esterification reaction[J]. J Mol Catal A:Chem, 2007,275(1/2):77-83.  

    18. [18]

      BRAHMKHATRI V, PATEL A. 12-Tungstophosphoric acid anchored to SBA-15:An efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids[J]. Appl Catal A:Gen, 2011,403(1/2):161-172.  

    19. [19]

      SERT E, ATALAY F S. Esterification of acrylic acid with different alcohols catalyzed by zirconia supported tungstophosphoric acid[J]. Ind Eng Chem Res, 2012,51(19):6666-6671. doi: 10.1021/ie202609f

    20. [20]

      DAI Y, LI B D, QUAN H D, LV C X. [Hmim]3PW12O40:A high-efficient and green catalyst for the acetalization of carbonyl compounds[J]. Chin Chem Lett, 2010,21(6):678-681. doi: 10.1016/j.cclet.2010.02.004

    21. [21]

      MA J W, YE X K, WU Y. Study on the catalytic property of heteropoly compound:synthesis, characterization and catalytic action on H2O2 decomposition of heteropoly tungstophosphoric compound substituted by transition metal ion[J]. Chin J Catal, 1991,12(6):443-450.

    22. [22]

      PARIDA K M, RANA S, MALLICK S, RATH D. Cesium salts of heteropoly acid immobilized mesoporous silica:An efficient catalyst for acylation of anisole[J]. J Colloid Interf Sci, 2010,350(1):132-139. doi: 10.1016/j.jcis.2010.06.025

    23. [23]

      CID R, PECCHI G. Potentiometric method for determining the number and relative strength of acid sites in colored catalysts[J]. Appl Catal A:Gen, 1985,14(1/3):15-21.  

    24. [24]

      GORSD M, SATHICQ G, ROMANELLI G, PIZZIO L, BLANCO M. Tungstophosphoric acid supported on core-shell polystyrene-silicamicrospheres or hollow silica spheres catalyzed trisubstitutedimidazole synthesis by multicomponent reaction[J]. J Mol Catal A:Chem, 2016,420:294-302. doi: 10.1016/j.molcata.2016.04.010

    25. [25]

      GONG S W, LU J, WANG H H, LIU L J, ZHANG Q. Biodiesel production via esterification of oleic acid catalyzed by picolinic acid modified 12-tungstophosphoric acid[J]. Appl Energy, 2014,134:283-289. doi: 10.1016/j.apenergy.2014.07.099

    26. [26]

      ZHANG S, ZU Y G, FU Y J, LUO M, ZHANG D Y, EFFERTH T. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst[J]. Bioresour Technol, 2010,101(3):931-936. doi: 10.1016/j.biortech.2009.08.069

    27. [27]

      MORALES I J, GONZÁLEZ J S, TORRES P M, LÓPEZ A J. Zirconium doped MCM-41 supported WO3 solid acid catalysts for the esterification of oleic acid with methanol[J]. Appl Catal A:Gen, 2010,379(1):61-68.

    28. [28]

      SHU Q, YUAN H, LIU B, ZHU L H, ZHANG C X, WANG J F. Synthesis of biodiesel from model acidic oil catalyzed by a novel solid acid catalyst SO42-/C/Ce4+[J]. Fuel, 2015,143:547-554. doi: 10.1016/j.fuel.2014.11.081

    29. [29]

      MORENO J I, JAIMES R, GÓMEZ R, GÓMEZ M E N. Evaluation of sulfated tin oxides in the esterification reaction of free fatty acids[J]. Catal Today, 2011,172(1):34-40. doi: 10.1016/j.cattod.2011.03.052

    30. [30]

      SANTOS J S, DIAS J A, DIAS S C L, DE MACEDO J L, GARCIA F A C, ALMEIDA L S, DE CAVALHO E N C B. Acidic characterization and activity of (NH4)xCs2.5-xH0.5PW12O40 catalysts in the esterification reaction of oleic acid with ethanol[J]. Appl Catal A:Gen, 2012,443/444:33-39. doi: 10.1016/j.apcata.2012.07.013

    31. [31]

      SHU Q, HOU X P, ZHU L H, SHEN B P, MA F, WANG J F. Preparation of a novel solid acid catalyst SO42-/Nd2O3/C and study of its performance for the synthesis of biodiesel from esterification reaction of oleic acid and methanol[J]. J Fuel Chem Technol, 2016,44(2):209-216.

    32. [32]

      NAKAJIMA K, HARA M. Amorphous carbon with SO3H groups as a solid Brönsted acid catalyst[J]. ACS Catal, 2012,2(7):1296-1304. doi: 10.1021/cs300103k

    33. [33]

      ILGEN O. Investigation of reaction parameters, kinetics and mechanism of oleic acid esterification with methanol by using Amberlyst 46 as a catalyst[J]. Fuel Process Technol, 2014,124(8):134-139.  

    34. [34]

      ZHANG Y, WONG W T, YUNG K F. Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia[J]. Appl Energy, 2014,116(1):191-198.  

    35. [35]

      JÚNIOR C A R M, ALBURQUERQUE C E R, CARNEIRO J S A, DARIVA C, FORTUNY M, SANTOS A F, EGUES S M S, RAMOS A L D. Solid-scid-catalyzed esterification of oleic acid assisted by microwave heating[J]. Ind Eng Chem Res, 2010,49(23):12135-12139. doi: 10.1021/ie100501d

  • 加载中
    1. [1]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    2. [2]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    3. [3]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    4. [4]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    5. [5]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    6. [6]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    7. [7]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Li FuZiye SuShuyang WuYanfen ChengChuan HuJinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227

    10. [10]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    11. [11]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    12. [12]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    13. [13]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    14. [14]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    15. [15]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    16. [16]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    17. [17]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    18. [18]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    19. [19]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    20. [20]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

Metrics
  • PDF Downloads(3)
  • Abstract views(704)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return