Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst
- Corresponding author: LIU Li-jun, liulijun@lcu.edu.cn GONG Shu-wen, gongshw@lcu.edu.cn
Citation:
WANG Hong-hong, LIU Li-jun, GONG Shu-wen. Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(3): 303-310.
AHMED N, SIDDIQUI Z N. Sulphated silica tungstic acid as a highly efficient and recyclable solid acid catalyst for the synthesis of tetrahydropyrimidines and dihydropyrimidines[J]. J Mol Catal A:Gen, Chem, 2014,387(6):45-56.
NOSHADI I, KANJILAL B, DU S C, BOLLAS G M, SUIB S L, PROVATAS A, LIU F J, PARNAS R S. Catalyzed production of biodiesel and bio-chemicals from brown grease using Ionic Liquid functionalized ordered mesoporous polymer[J]. Appl Energy, 2014,129:112-122. doi: 10.1016/j.apenergy.2014.04.090
YAN Y J, LI X, WANG G L, GUI X H, LI G L, SU F, WANG X F, LIU T. Biotechnological preparation of biodiesel and its high-valued derivatives:A review[J]. Appl Energy, 2014,113:1614-1631. doi: 10.1016/j.apenergy.2013.09.029
LIU R L, GAO X Y, AN L, MA J, ZHANG J F, ZHANG Z Q. Fabrication of magnetic carbonaceous solid acids from banana peel for the esterification of oleic acid[J]. RSC Adv, 2015,5(10):143-151.
ZHU S H, GAO X Q, DONG F, ZHU Y L, ZHANG H Y, LI Y W. Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid[J]. J Catal, 2013,306(10):155-163.
LEUNG D Y C, WU X, LEUNG M K H. A review on biodiesel production using catalyzed transesterification[J]. Appl Energy, 2010,87(4):1083-1095. doi: 10.1016/j.apenergy.2009.10.006
SARKAR A, GHOSH S K, PRAMANIK P. Investigation of the catalytic efficiency of a new mesoporous catalyst SnO2/WO3 towards oleic acid esterification[J]. J Mol Catal A:Chem, 2010,327(1):73-79.
SHU Q, NAWAZ Z, GAO J X, LIAO Y H, ZHANG Q, WANG D Z, WANG J F. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst:Reaction and separation[J]. Bioresour Technol, 2010,101(14):5374-5384. doi: 10.1016/j.biortech.2010.02.050
FAUZI A H M, AMIN N A S, MAT R. Esterification of oleic acid to biodiesel using magnetic ionic liquid:Multi-objective optimization and kinetic study[J]. Appl Energy, 2014,114(114):809-818.
ARANDA D, SANTOS R, TAPANES N, RAMOS A, ANTUNES O. Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids[J]. Catal Lett, 2008,122(1):20-25.
LIU T, LI Z, LI W, SHI C, WANG Y. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol[J]. Bioresour Technol, 2013,133(2):618-621.
PARK J Y, KIM D K, LEE J S. Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst[J]. Bioresour Technol, 2010,101(s1):S62-S65.
OLIVEIRA C F, DEZANETI L M, GARCIA F A C, DE MACEDO J L, DIAS J A, DIAS S C L, ALVIM K S P. Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia[J]. Appl Catal A:Gen, 2010,372(2):153-161. doi: 10.1016/j.apcata.2009.10.027
OKUHARA T. Water-tolerant solid acid catalysts[J]. Chem Rev, 2002,102(3):3641-3666.
KIM H J, JEON Y K, PARK J I, SHUL Y G. Heterocycle-modified 12-tungstophosphoric acid as heterogeneous catalyst for epoxidation of propylene with hydrogen peroxide[J]. J Mol Catal A:Chem, 2013,378(11):232-237.
LI J, LI D F, XIE J Y, LIU Y Q, GUO Z J, WANG Q, LYU Y, ZHOU Y, WANG J. Pyrazinium polyoxometalate tetrakaidecahedron-like crystals esterify oleic acid with equimolar methanol at room temperature[J]. J Catal, 2016,339:123-134. doi: 10.1016/j.jcat.2016.03.036
PARIDA K M, MALLICK S. Silicotungstic acid supported zirconia:An effective catalyst for esterification reaction[J]. J Mol Catal A:Chem, 2007,275(1/2):77-83.
BRAHMKHATRI V, PATEL A. 12-Tungstophosphoric acid anchored to SBA-15:An efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids[J]. Appl Catal A:Gen, 2011,403(1/2):161-172.
SERT E, ATALAY F S. Esterification of acrylic acid with different alcohols catalyzed by zirconia supported tungstophosphoric acid[J]. Ind Eng Chem Res, 2012,51(19):6666-6671. doi: 10.1021/ie202609f
DAI Y, LI B D, QUAN H D, LV C X. [Hmim]3PW12O40:A high-efficient and green catalyst for the acetalization of carbonyl compounds[J]. Chin Chem Lett, 2010,21(6):678-681. doi: 10.1016/j.cclet.2010.02.004
MA J W, YE X K, WU Y. Study on the catalytic property of heteropoly compound:synthesis, characterization and catalytic action on H2O2 decomposition of heteropoly tungstophosphoric compound substituted by transition metal ion[J]. Chin J Catal, 1991,12(6):443-450.
PARIDA K M, RANA S, MALLICK S, RATH D. Cesium salts of heteropoly acid immobilized mesoporous silica:An efficient catalyst for acylation of anisole[J]. J Colloid Interf Sci, 2010,350(1):132-139. doi: 10.1016/j.jcis.2010.06.025
CID R, PECCHI G. Potentiometric method for determining the number and relative strength of acid sites in colored catalysts[J]. Appl Catal A:Gen, 1985,14(1/3):15-21.
GORSD M, SATHICQ G, ROMANELLI G, PIZZIO L, BLANCO M. Tungstophosphoric acid supported on core-shell polystyrene-silicamicrospheres or hollow silica spheres catalyzed trisubstitutedimidazole synthesis by multicomponent reaction[J]. J Mol Catal A:Chem, 2016,420:294-302. doi: 10.1016/j.molcata.2016.04.010
GONG S W, LU J, WANG H H, LIU L J, ZHANG Q. Biodiesel production via esterification of oleic acid catalyzed by picolinic acid modified 12-tungstophosphoric acid[J]. Appl Energy, 2014,134:283-289. doi: 10.1016/j.apenergy.2014.07.099
ZHANG S, ZU Y G, FU Y J, LUO M, ZHANG D Y, EFFERTH T. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst[J]. Bioresour Technol, 2010,101(3):931-936. doi: 10.1016/j.biortech.2009.08.069
MORALES I J, GONZÁLEZ J S, TORRES P M, LÓPEZ A J. Zirconium doped MCM-41 supported WO3 solid acid catalysts for the esterification of oleic acid with methanol[J]. Appl Catal A:Gen, 2010,379(1):61-68.
SHU Q, YUAN H, LIU B, ZHU L H, ZHANG C X, WANG J F. Synthesis of biodiesel from model acidic oil catalyzed by a novel solid acid catalyst SO42-/C/Ce4+[J]. Fuel, 2015,143:547-554. doi: 10.1016/j.fuel.2014.11.081
MORENO J I, JAIMES R, GÓMEZ R, GÓMEZ M E N. Evaluation of sulfated tin oxides in the esterification reaction of free fatty acids[J]. Catal Today, 2011,172(1):34-40. doi: 10.1016/j.cattod.2011.03.052
SANTOS J S, DIAS J A, DIAS S C L, DE MACEDO J L, GARCIA F A C, ALMEIDA L S, DE CAVALHO E N C B. Acidic characterization and activity of (NH4)xCs2.5-xH0.5PW12O40 catalysts in the esterification reaction of oleic acid with ethanol[J]. Appl Catal A:Gen, 2012,443/444:33-39. doi: 10.1016/j.apcata.2012.07.013
SHU Q, HOU X P, ZHU L H, SHEN B P, MA F, WANG J F. Preparation of a novel solid acid catalyst SO42-/Nd2O3/C and study of its performance for the synthesis of biodiesel from esterification reaction of oleic acid and methanol[J]. J Fuel Chem Technol, 2016,44(2):209-216.
NAKAJIMA K, HARA M. Amorphous carbon with SO3H groups as a solid Brönsted acid catalyst[J]. ACS Catal, 2012,2(7):1296-1304. doi: 10.1021/cs300103k
ILGEN O. Investigation of reaction parameters, kinetics and mechanism of oleic acid esterification with methanol by using Amberlyst 46 as a catalyst[J]. Fuel Process Technol, 2014,124(8):134-139.
ZHANG Y, WONG W T, YUNG K F. Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia[J]. Appl Energy, 2014,116(1):191-198.
JÚNIOR C A R M, ALBURQUERQUE C E R, CARNEIRO J S A, DARIVA C, FORTUNY M, SANTOS A F, EGUES S M S, RAMOS A L D. Solid-scid-catalyzed esterification of oleic acid assisted by microwave heating[J]. Ind Eng Chem Res, 2010,49(23):12135-12139. doi: 10.1021/ie100501d
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
Jing Guo , Zhi-Guo Lu , Rui-Chen Zhao , Bao-Ku Li , Xin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Lihang Wang , Mary Li Javier , Chunshan Luo , Tingsheng Lu , Shudan Yao , Bing Qiu , Yun Wang , Yunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591
Zhifeng CAI , Ying WU , Yanan LI , Guiyu MENG , Tianyu MIAO , Yihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
Li Fu , Ziye Su , Shuyang Wu , Yanfen Cheng , Chuan Hu , Jinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Yingying Yan , Wanhe Jia , Rui Cai , Chun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819
Fengyun Li , Zerong Pei , Shuting Chen , Gen li , Mengyang Liu , Liqin Ding , Jingbo Liu , Feng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Peizhe Li , Qiaoling Liu , Mengyu Pei , Yuci Gan , Yan Gong , Chuchen Gong , Pei Wang , Mingsong Wang , Xiansong Wang , Da-Peng Yang , Bo Liang , Guangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
Xubin Qian , Lei Xu , Xu Ge , Zhun Liu , Cheng Fang , Jianbing Wang , Junfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218
Xinyue Lan , Junguang Liang , Churan Wen , Xiaolong Quan , Huimin Lin , Qinqin Xu , Peixian Chen , Guangyu Yao , Dan Zhou , Meng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616
Dexuan Xiao , Tianyu Chen , Tianxu Zhang , Sirong Shi , Mei Zhang , Xin Qin , Yunkun Liu , Longjiang Li , Yunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602
(a): methanol/oleic acid molar ratio (5% catalyst amount, 80 ℃, 6 h);
(b): catalyst content (methanol/oleic acid molar ratio of 8, 80 ℃, 6 h);
(c): reaction time (5% catalyst amount, methanol/oleic acid molar ratio of 8, 80 ℃);
(d): reaction temperature (5% catalyst amount, methanol/oleic acid molar ratio of 8, 6 h)